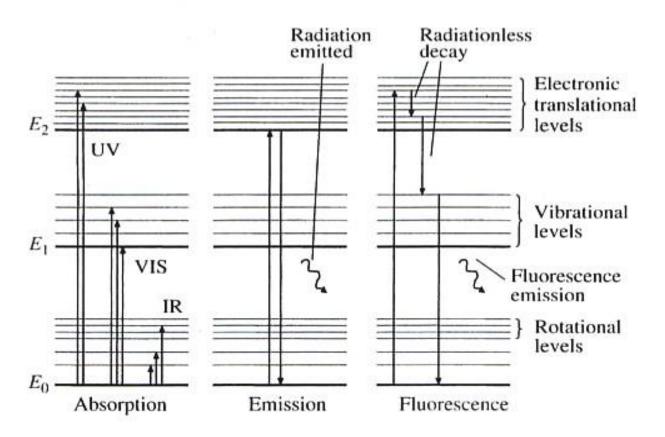
به نام خدایی که به شدت کافیست

Workshop in Analytical Instrumentation for Atomic Absorption Spectroscopy By: Ali Sorkheh & DSA Co. Daghighshimi@yahoo.com

www.daghighshimi.ir

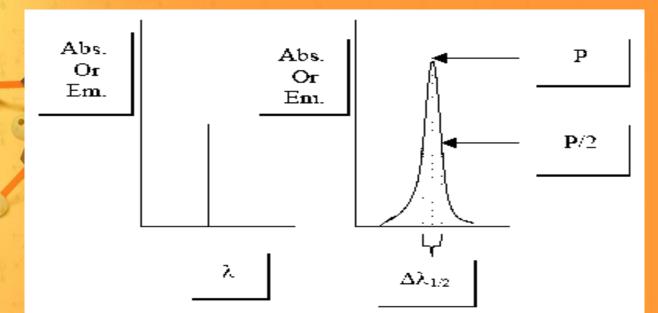

Atomic Spectroscopy for Metal Analysis Introduction to the Principles of Atomic Spectroscopy

3 major types of atomic spectroscopy:

Absorption – light of a wavelength characteristic of the element of interest radiates through the atom vapor. The atoms absorb some of the light. The amount absorbed is measured.

Emission – sample is heated to excitation/ionization of the sample atoms. Excited and ionized atoms decay to a lower energy state through emission. Intensity of the light emitted is measured.

Fluorescence – a short wavelength is absorbed by the sample atoms, a longer wavelength (lower energy) radiation characteristic of the element is emitted and measured


 E_0 = Ground level; E_1 , E_2 = Excited states

Energy spacing: vibration > rotation >> translation

Figure 8.4 Three types of spectroscopy—absorption, emission, and fluorescence

Atomic Line Width

It is taken for granted that an atomic line should have infinitesimally small (or zero) line width since transition between two quantum states requires an exact amount of energy. However, careful examination of atomic lines reveals that they have finite width. For example, try to look at the situation where we expand the x-axis (wavelength axis) of the following line:

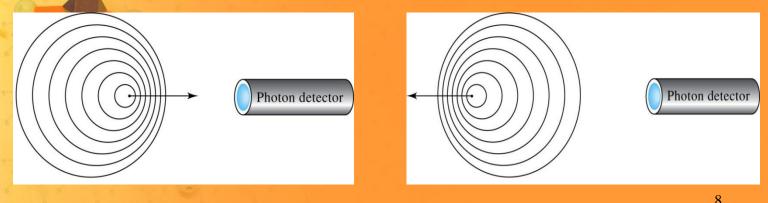
The effective line width in terms of wavelength units is equal to $Dl_{1/2}$ and is defined as the width of the line, in wavelength units, measured at one half maximum signal (P).

The question which needs a definite answer is what causes the atomic line to become broad ?

Reasons for Atomic Line Broadening

1. The Uncertainty Principle

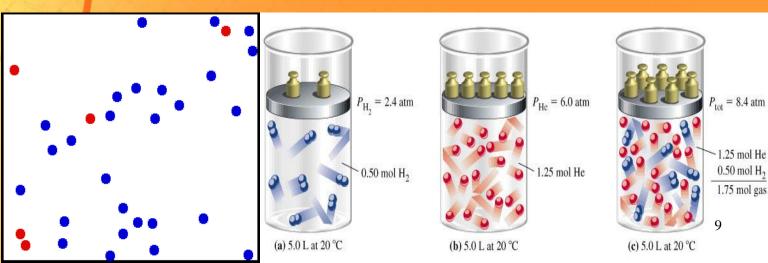
We have seen earlier that <u>Heisenberg uncertainty principle</u> suggests that nature places limits on the precision by which two interrelated physical quantities can be measured. It is not easy, will have some uncertainty, to calculate the energy required for a transition when the lifetime of the excited state is short. The ground state lifetime is long but the lifetime of the excited state is very short which suggests that there is an uncertainty in the <u>calculation of the transition time</u>. We have seen earlier that when we are to estimate the energy of a transition and thus the wavelength (line width), it is required that the two states where a transition takes place should have infinite lifetimes for the uncertainty in energy (or wavelength) to be zero:


DE>h/Dt

Therefore, atomic lines should have some broadening due to uncertainty in the lifetime of the excited state.

The broadening resulting from the uncertainty principle is referred to as natural line width and is unavoidable.

2. Doppler effect


- Emitted or absorbed wavelength changes as a result of atom movement relative to detector
- ✓ Wavelength decrease if motion toward receiver
- ✓ Wavelength increases if motion away from receiver

Usage in measurement of velocity of galaxies, age of universe and big bang theory

3-Pressure(Lorentz or Random or Stark or Holtzmark) broadening

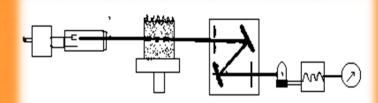
* Collisions with atoms/molecules transfers small quantities of vibrational energy (heat) - ill-defined ground state energy effect worse at high pressures:

✓ Lorentz broadening: Collisions of different molecules in hight concentration.

✓ Stark broadening: Collisions of charged particles.

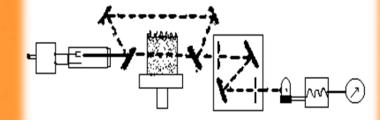
✓ Vandevals effect : Collisions of no charged(neutrals) particles.

✓ Holtzmark broadening: Collisions of same atomes.

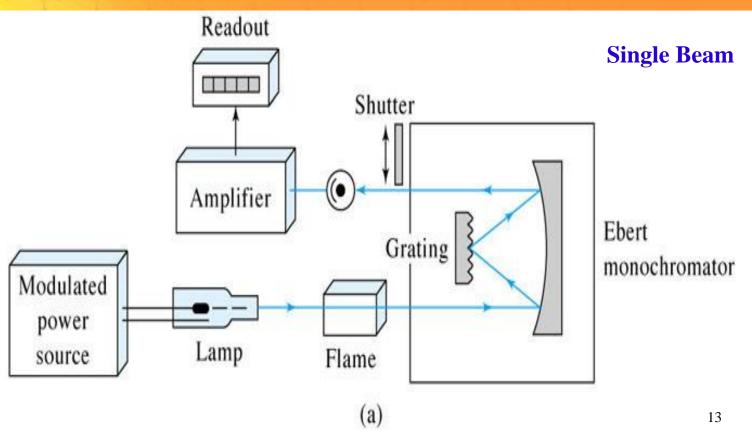

Atomic Absorption Spectroscopy(AAS) Theory & Principle of OPERATION

- AAS is an analytical technique that measures the concentrations of elements.
- It makes use of the absorption of light by these elements in order to measure their concentration .
- Atomic-absorption spectroscopy quantifies the absorption of ground state atoms in the gaseous state .

- The atoms absorb UV or Vis light and make transitions to higher electronic energy levels .
- The analyte **concentration** is determined from the amount of absorption.


Basic AA Design

First instruments were *DIRECT Current(DC), SINGLE Beam* designs


Next generation were *ALTERNATINGCurrent(AC)* to try to compensate for high Drift & Instability

Final designs had to "split" the signal into a "DOUBLE Beam" path to fully correct for Noise, Drift & Errors

By:A.Sorkheh@yahoo.com

Single Beam or Double Beam AAS Systems ?

By:A.Sorkheh@yahoo.com

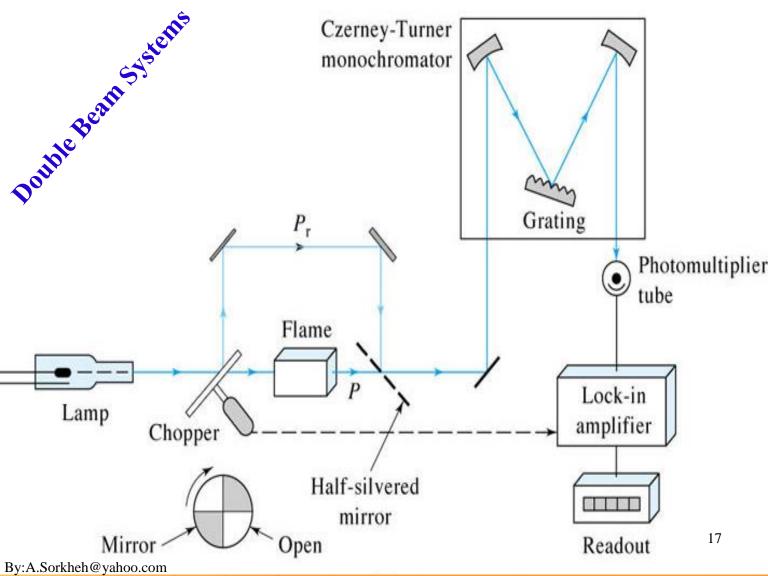
Single Beam Systems

The light source comprising of a hollow cathode lamp emits sharp atomic line of the element whose determination is required.

✓ The light is modulated (switched on and off) rapidly by means of a rotating chopper located between the light source and the flame.

 Modulation can also be achieved by pulsing the power (switched on and off rapidly) to the light source. Modulation serves to differentiate the light coming from the source lamp, from the emission and from the flame.

The modulated light is led to the flame where ground state atoms of the element of interest are present and after absorption is led to the monochromator which isolates the wavelength of interest which is then led to the detector.


Advantages of Single Beam Systems

Single beam instruments are less expensive

High energy throughput due to non-splitting of source beam results in high sensitivity of detection

Disadvantages

Instability due to lack of compensation for disturbances like electronic circuit fluctuations, voltage fluctuations, mechanical component's instability or drift in energy of light sources. Such drifts result in abnormal fluctuations in the results.

The light beam from the source is split into <u>sample beam</u> and <u>reference beam</u> by the mechanical chopper.

The reference beam monitors the lamp energy.

The sample beam reflects sample absorption.

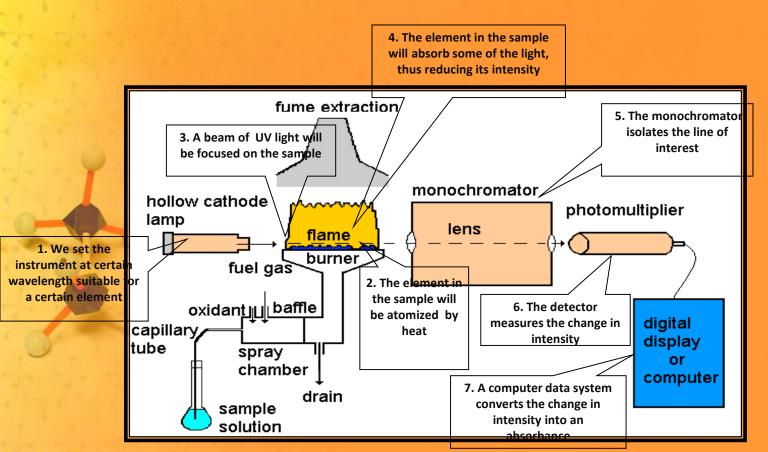
The observed absorbance measurement is the ratio of the sample and reference beams which are recombined before moving to the monochromator.

This arrangement compensates the effects due to drift in lamp intensity, electronic and mechanical fluctuations which affect both the sample and reference beams equally.

Advantages of Double Beam Systems

Modern improvements in optics permit high level of automation and offer the same or even better level of detection as compared to earlier single beam systems. Instability factors due to lamp drift, stray light, voltage fluctuations do not affect the measurement in real-time.

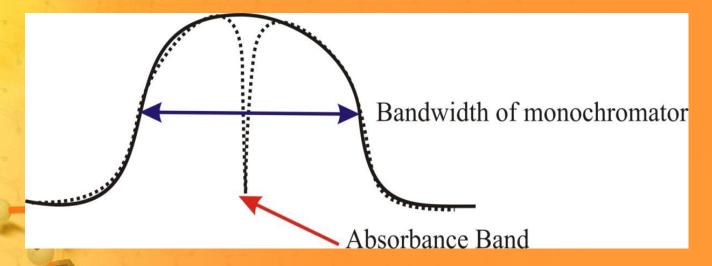
• Little or no lamp warm up time is required. This not only improves throughput of results but also conserves lamp life.


• The cost factor is more than offset by the advantages offered by modern double beam systems and therefore these have become the preferred choice.

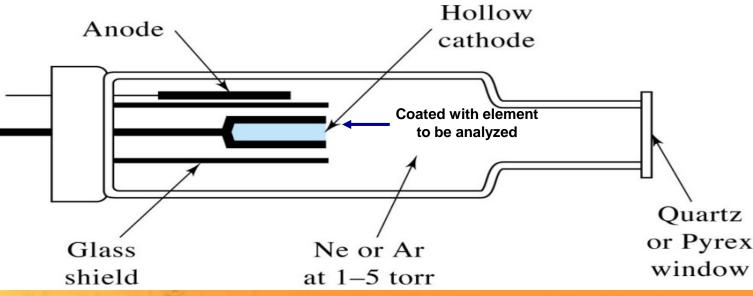
Basic SPECTROMETER Design

All Analytical Spectrometers have several BASIC design components in common:

- Light Source(HCL in FAAS)
- Sample "Chamber" or Atomizer (atom cell)
- Optical System (Monochromator)
- Detector(E.g. Photomultiplier)
- Output (Read out)


The simple diagram for the AAS

A) Light source


 \checkmark

- Need light source with a <u>narrow</u> bandwidth for light output
- AA lines are remarkably narrow (0.002 to 0.005 nm)
- Separate light source and filter is used for each element

- problem with using typical UV/Vis continuous light source:
- have right l, but also lots of others (non-monochromatic light)
- hard to see decrease in signal when atoms absorb in a small bandwidth
- only small decrease in total signal area
- ➤ with large amount of elements → bad sensitivity

- 2) Solution is to use light source that has line emission in range of interest
- ✓ laser but hard to match with element line of interest
- ✓ hollow cathode lamp (HCL) is common choice

Light source

The main sources used for atomic absorption:

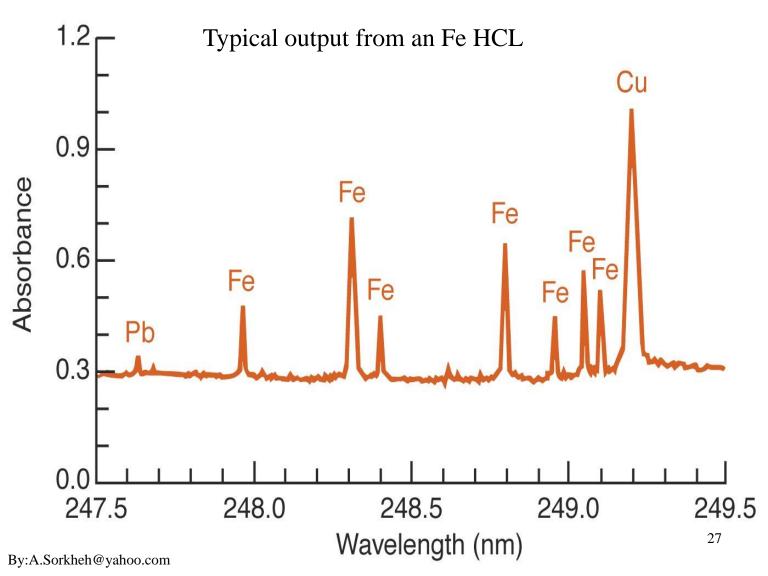
1.Hollow cathode lamp (HCL): low intensity and short lamp lifetime

2.Electrodeless discharge lamp (EDL):more intense than hollow cathode lamps

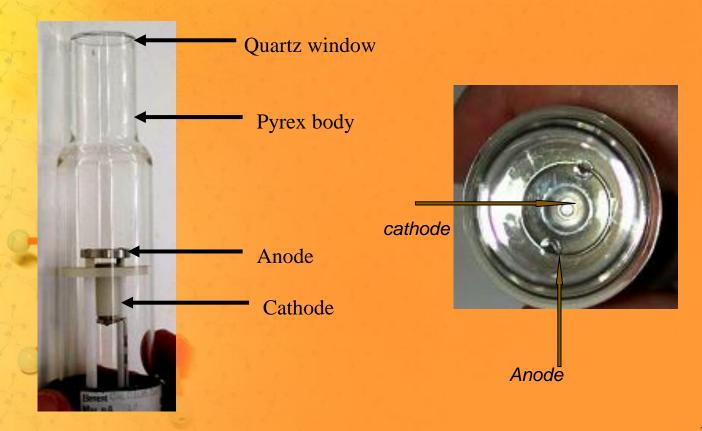
The hollow cathode lamp is an excellent, bright, stable line source for most elements.


✓ EDLs are typically more intense than hollow cathode lamps and, therefore, may offer better precision and lower detection limits for some elements. The cathode is a hollowed-out cylinder constructed entirely or in part of the metal whose spectrum is to be produced.

The anode and cathode are sealed in a glass cylinder filled with neon or argon.


✓ The glass cylinder has a quartz or UV glass window for optimum transmittance of the emitted radiation.

The optimum fill gas is selected that gives the best lamp intensity while taking into consideration spectral interferences from either neon or argon.


A *red glow* is observed in lamps filled with *neon*, while *argon* filled lamps have
 a *blue glow*.

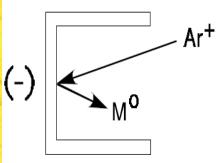
By:A.Sorkheh@yahoo.com

Hollow Cathode Lamp

An electrical potential is applied between the anode and cathode and some of the fill gas atoms are ionized.

✓ *Sputtering*: The positively charged ions collide with the negatively charged cathode and dislodge metal atoms in a process called "sputtering."

Excitation & Emission: Sputtered metal atoms are further excited to emission through impact with the fill gas.


 Hollow cathode lamps have a finite lifetime. With extended use, the sputtering process removes some of the metal atoms from the cathode and these are deposited elsewhere.

✓ Fill gas is absorbed in the sputtered metal, on the glass walls and also absorbed into the glass from bombardment.

Lamps for volatile elements age faster due to more rapid sputtering of the cathode.

By:A.Sorkheh@yahoo.com

<u>Process</u>: 1. ionizes inert gas to high potential (300V)

1. Sputtering

 $Ar \rightarrow Ar^+ + e^-$

2. Ar⁺ go to "-" cathode & hit surfaces

3. As Ar⁺ ions hit cathode, some of deposited element is excited and dislodged into gas phase (sputtering)

М*

3. Emission

4. Excited element relaxes to ground state and emits characteristic radiation

Advantage: sharp lines specific for element of interest

2. Excitation

Disadvantage: can be expensive, need to use different lamp for each element tested.

By:A.Sorkheh@yahoo.com

30

Multielement Lamps

- ✓ The cathode of a hollow cathode lamp is generally constructed from a very pure metal resulting in a very pure emission spectrum.
- ✓ It is possible to construct a cathode from a mixture or alloy of several metals. The resulting "multielement" lamp can be used as a source for all the metals contained in the cathode.
- ✓ There is a wide variety of multielement lamp combinations available.
- Not all metals can be used in combination due to metallurgical properties or spectral limitations.

Single-Element or Multielement Lamp?

✓ The emission intensity for a particular element in a multielement lamp is not as great as that for the same element in a single-element lamp. This can result in a poorer signal/noise ratio which can influence the precision of analyses and the detection limit.

✓ When working close to the detection limit or when the best precision is required, select a single-element lamp.

If economics is a problem, one multielement lamp can take the place of several single-element lamps.

✓ A multielement lamp is adequate for routine analyses that are well above the detection limit.

✓ If a backup lamp is necessary for a specific determination, a multielement lamp is ideal.

✓ If an infrequent analytical determination is required for several elements, a multielement lamp can offer considerable savings.

Hollw cathod lamp **Windows** SPECIFICATIONS High purity fused quartz (Spectral range 200 - 5000nm). Cathode Most of the cathode materials used in standard Cathodeon hollow cathode lamps may be used in the "see through" design. (Unavailable elements are Rb, Cs, K). Cathode length is 19mm and bore diameter is in the range 3 to 6mm. Where material is not critical Iron is recommended for its high intensity operation. Neon, Argon, Xenon, Krypton, Helium, Deuterium, Hydrogen. Gas mixtures and other gases may be specified provided they are non-Where the gas is not critical Neon or Argon are recommended based on corrosive and non-radioactive. Cathodeon standard hollow cathode lamp practice. Fill pressure must normally be in the range of 8 to 15mbar.

ELECTRICAL

Striking volts 350—400V Running volts 200—320V **Maximumcontinuous current 5 - 20mA(Each cathode material** has a maximum value within this 33 range beyond which life and/or performance is reduced).

By:A.Sorkheh@yahoo.com

Lamp Current

The label on each hollow cathode lamp gives an operating and maximum current.

The recommended operating currents are those which have been found through experience to be appropriate for most analytical situations.

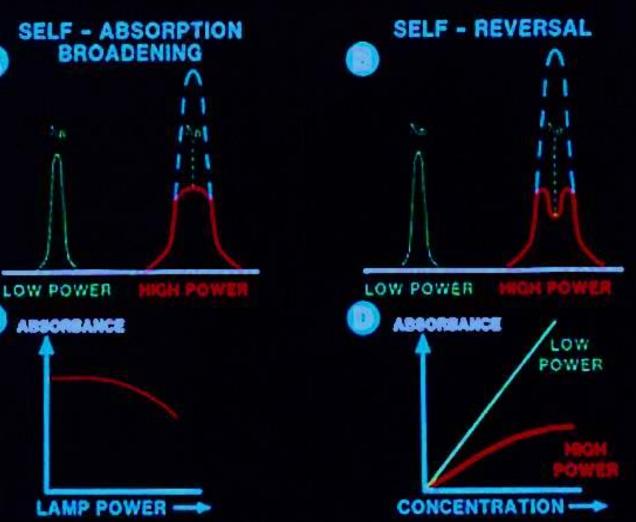
However, you may find by making tests that it is possible to get satisfactory analytical results with a particular lamp run at less than the recommended current.

Running at lower current reduces the light output and therefore requires a higher gain setting of the instrument, but it does not harm the lamp in any way.

On the contrary, it will extend the lamp life. Therefore, if you find that the performance (precision) is not poorer when using slightly lower currents than recommended, by all means do so.

As a hollow cathode lamp ages, it may be necessary to increase the lamp current to the maximum current rating to give additional element light emission to equal that originally obtained when the lamp was new.

While this will somewhat accelerate the aging of the lamp, it is a necessary compromise to obtain enough element emission for good performance.


Analytical sensitivity may be poorer at higher current settings.

Lamps should never be operated above the maximum current rating, as this will dramatically shorten lamp life.

Hollow cathode lamp failure occurs when the fill gas is gradually captured on the inner surfaces of the lamp and, finally, the lamp will no longer light.

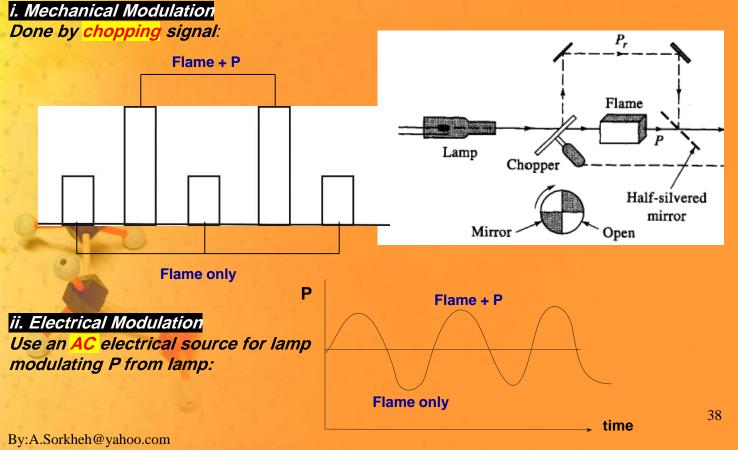
Higher lamp currents accelerate gas depletion and cathode''sputtering'' and should be avoided until the age of the lamp requires a current increase.

Lamp Power effects on Line Signal quality

Warm-Up Time

The time needed for a hollow cathode lamp to reach a constant emission intensity is short, and with a double-beam instrument no warm-up is required.

With single-beam instruments, a short warm-up period is recommended.

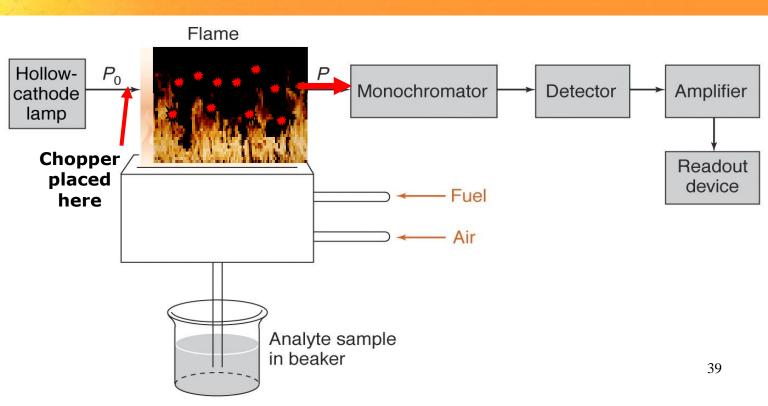

Source Modulation (spectral interference due to flame)

detector

- problem with working with flame in AA is that light from flame and light source both reach

- measure small signal from large background

- need to subtract out flames to get only light source signal (P/P_o)



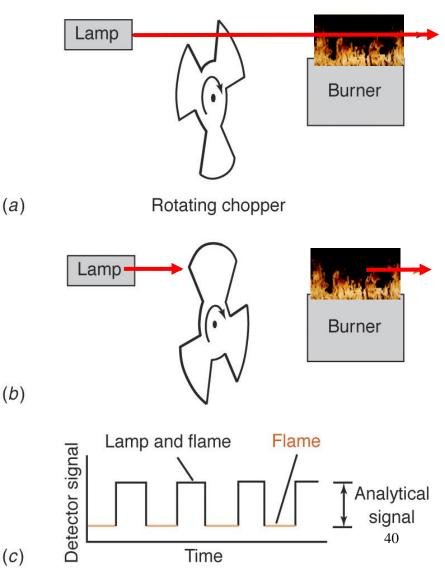
AA Source Modulation

Need to eliminate emission from analyte atoms

Source beam is chopped

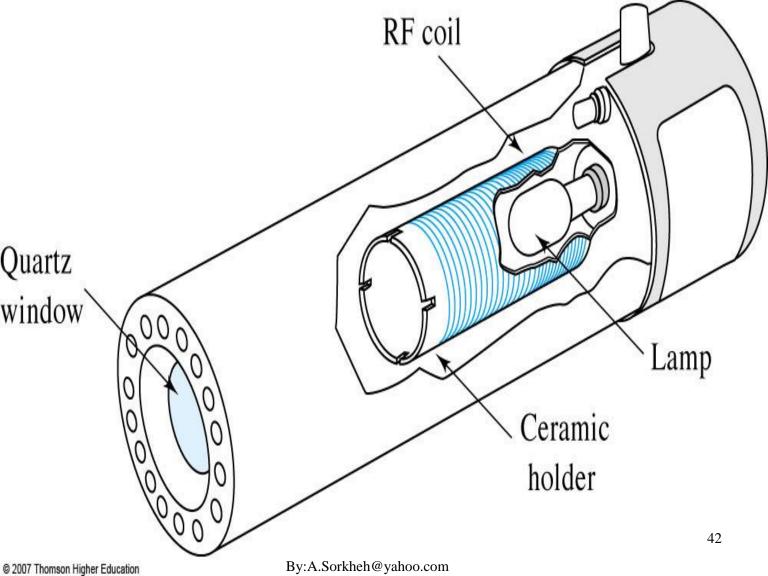
 \triangleright

Beam chopper for subtracting flame background emission


(a) Lamp and flame emission reach detector

(b) Only flame emission reaches detector

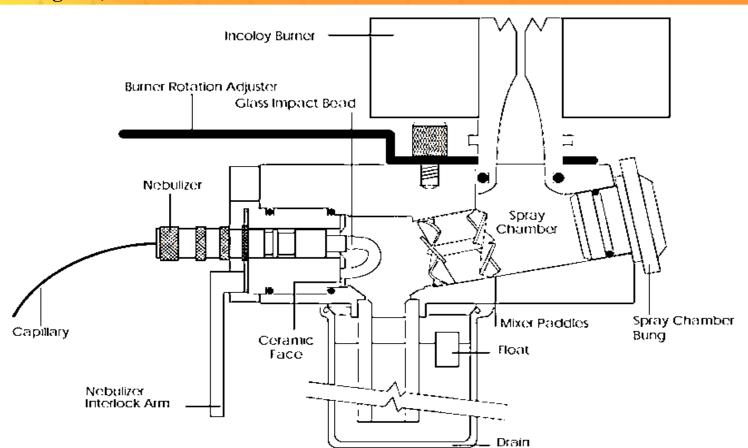
(c) Resulting signal


By:A.Sorkheh@yahoo.com

(c)

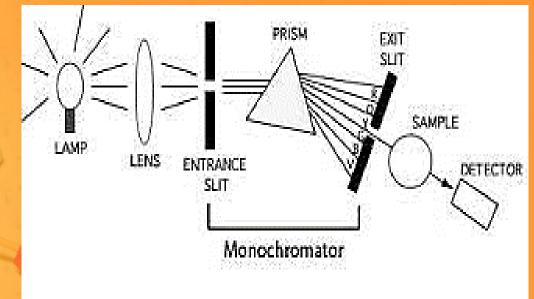
Electrodeless Discharge Lamps (EDLs):

These provide radiant intensities that are usually one to two orders of magnitude greater than hollow cathode lamps. A typical lamp is constructed from a sealed quartz tube containing a few torr of an inert gas such as argon and a small quantity of the metal (or its salt) whose spectrum is of interest.



"SAMPLE" chamber or Atomizer to deliver the Solution is made of :

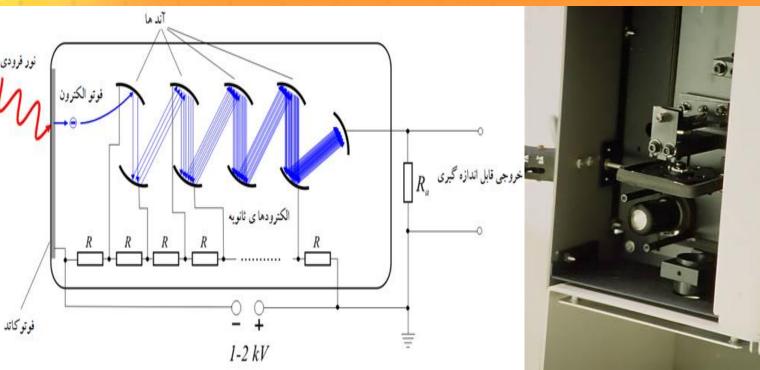
DYNAMIC NEBULIZER SPRAY CHAMBER BURNER HEAD


ATOMIZATION PROCESS ATOMIZATION PRODUCTION OF NEUTRAL FREE VAPORIZATION ATOMS EVAPORATION DEVELOPMENT OF LAMINAR MIXING FLOW FORMATION OF NEBULIZATION R FINE MIST

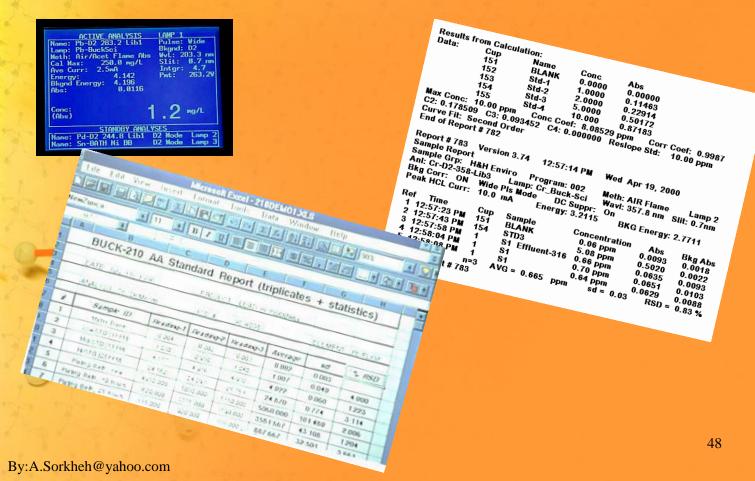
BURNER HEAD uses *Dynamic Impact-Bead* NEBULIZER for maximum Sample Aerosol delivery to Flame for ALL types of Solutions (high salt, organic)

OPTICAL SYSTEM

For the BUCK AAS consists of a compact, med-high Resolution, *SINGLE-BEAM, 1/4M Ebert* Monochromator with variable Slits to maximize separation of Resonance Lines that come from the Hollow-Cathode Lamps


Adjustable SLITS are used to increase the **Resolution / Separation** of HCL signals from Metals with "rich" Spectra (many lines); such as Fe, Ni, Mn & Co

Hi-Res w/ 2A (0.2nm) SLIT [blue] Lo-Res w/ 20A (2nm) SLIT (red)


The <u>DETECTOR</u> used to measure the Absorbance SIGNAL is a high-Gain / low-Noise *Photo-Multiplier Tube* (PMT) that is OPTIMIZED for the UV

region

DATA OUTPUT

<u>DATA OUTPUT</u> can be read directly from the Graphics LCD, sent to a Printer or be transferred to a Computer as an ASCII file to process in Excel, Lotus, etc.

By:A.Sorkheh@yahoo.com

AA Techniques(Atomizers)

There are several MODES of Analysis for Atomic Absorption Spectroscopy:

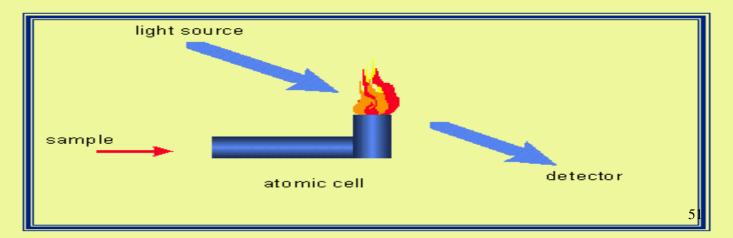
Flame AAS

Graphite Furnace AAS

Hydride Generation AAS

Cold-Vapor Mercury AAS

AA Techniques


Flame AAS

- Air-Acetylene (~2100oC) or Nitrous Oxide (~2300oC) Flames allow the determination of most Metals with high-PPB / low-PPM Detection Limits
- ✓ Simplest atomization of gas/solution/solid

 \checkmark

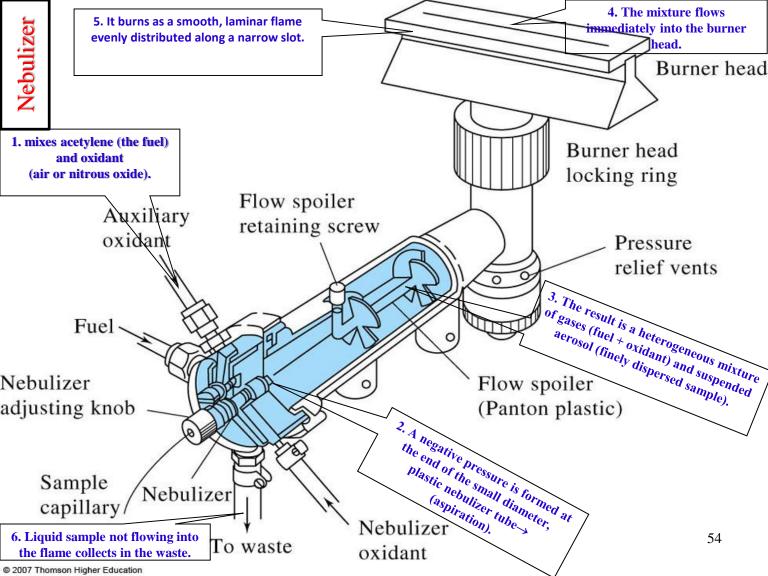
 \checkmark

- ✓ Laminar flow burner stable "sheet" of flame
- ✓ Flame atomization best for reproducibility (precision) (<1%)
 - **Relatively insensitive incomplete volatilization, short time in flame**

Flame Atomizers (Continuous Atomizers)

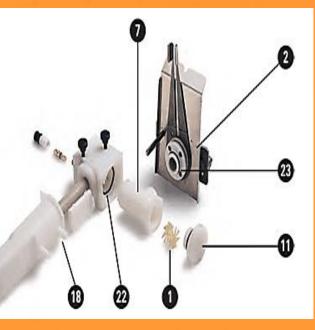
Burner Assembly:

Design: Polyethylene Pre-mix chamber, glass impact bead dispersion

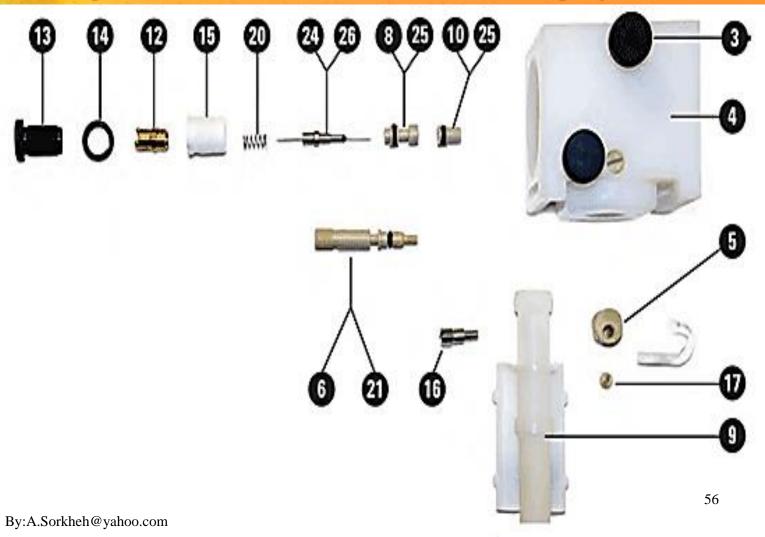

Burner Head: Titanium; air-acetylene head - 4" x 0.026" single slot(nitrous oxide head - 2" x 0.019" single slot)

Adjustments: Horizontal g

1. The simplest is a <u>turbulent flow burner</u> that is very similar to conventional Bunsen burner. This type of burner suffers from fluctuations in temperature since there is no good mechanism for homogeneous mixing of fuel and oxidant. The drop size of nebulized sample is also inhomogeneous which adds to fluctuations in signal. The path length of radiation through the flame is small which suggests a lower sensitivity of the technique.


By:A.Sorkheh@yahoo.com

Turbulent flow burners are also susceptible to flashback. These drawbacks were overcome using the most widely used laminar flow burner where quite flames and long path length are obtained. Flashback is avoided and very homogeneous mixing between fuel, oxidant, and droplets take place. Larger droplets are excluded and directed to a waste container. A schematic representation of the burner is shown below:



Spray Chamber

2102 N 10 10 10 10		_				
Item	Description					
1	Mixing paddle, fluorinated, 1/pk	-				
	Mixing paddles, fluorinated, 5/pk					
2	Mark 7 air/acetylene burner	3				
	Mark 7 nitrous oxide/acetylene burner					
Not Shown	Burner cleaning and alignment card, 100/pk	-				
7	Spray chamber body, fluorinated					
11	Pressure relief bung, fluorinated					
	O-ring for spray chamber bung, nitrile for aqueous solutions					
	O-ring for spray chamber bung, organic solvent compatible					
18	Kit, fluorinated liquid trap, drain tube with integrated float and magnet	(
22	O-ring spray chamber, nitrile	1				
	O-ring spray chamber, organic solvent compatible					
23	O-ring burner base, nitrile for aqueous solutions					
	O-ring burner base, organic solvent compatible					

Exploded view of nebulizer block from the spray chamber

Item	Description				
3	Spray chamber screw mounting				
4	Nebulizer block, fluorinated (excludes integrated nebulizer)				
5	Clamp bead adjuster				
6	Screw bead adjuster				
8	Nebulizer capillary guide				
9	Kit, fluorinated liquid trap, drain tube with integrated float and magnet				
10	Venturi nebulizer, PEEK				
12	Clamp bush guide				
13	Screw capillary adjuster				
14	Nut lock M12 x 0.5				
15	Bearing bush nebulizer				
16	Screw lock dog point M8				
17	Screw M6 x 6 Ertalyte				
18	Kit, fluorinated liquid trap, drain tube with integrated float and magnet				
20	Spring nebulizer				
21	O-ring screw bead adjuster, nitrile				
21	O-ring screw bead adjuster organic solvent compatible				
24	O-ring 1/32 in id x 3/32 in od x 1/32 in nitrile				
25	O-ring 3/16 in id x 5/16 in od x 1/16 in nitrile				
25	O-ring 3/16 in id x 5/16 in od x 1/16 in organic solvent compatible				
26	Nebulizer Capillary Kit Includes capillary assembly, capillary guide, nebulizer spring, nebulizer cleaning wire "Hi-Vac capillary tubing and standard capillary tubing				
Not Shown	Glass impact beads, 5/pk				
Not Shown	PTFE impact beads (for use with HF digests), 5/pk				
Not Shown	Mark 7 O-ring kit, for aqueous samples. Includes O-rings to suit screw bead adjuster (1 ea), nebulizer capillary assembly (1 ea), capillary guide and venturi (7 ea), spray chamber bung and burner (3 ea), and nebulizer block (1 ea).				
Not Shown	Mark 7 O-ring kit, for organic solvents. Includes O-rings to suit screw bead adjuster (1 ea), nebulizer capillary assembly (1 ea), capillary guide and venturi (2 ea), spray chamber bung and burner (2 ea), and nebulizer block (1 ea).				
Not Shown	Drain tubing for aqueous solutions, per meter, 2 m length required				
Not Shown	Drain tubing for organic solvents, nitrile rubber, per meter, 2 m length required				
Not Shown	Venturi extraction tool 57				
Not Shown	Nebulizer capillary extraction tool				

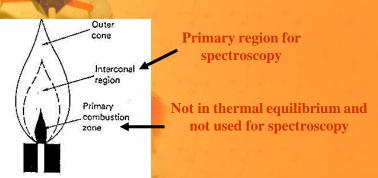
Advantages:

1. Uniform dropsize

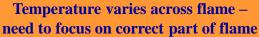
2. Homogeneous flame

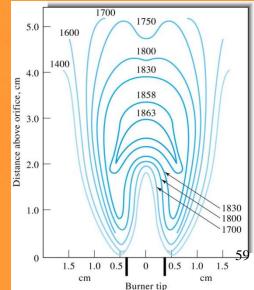
3. Quiet flame and a long path length

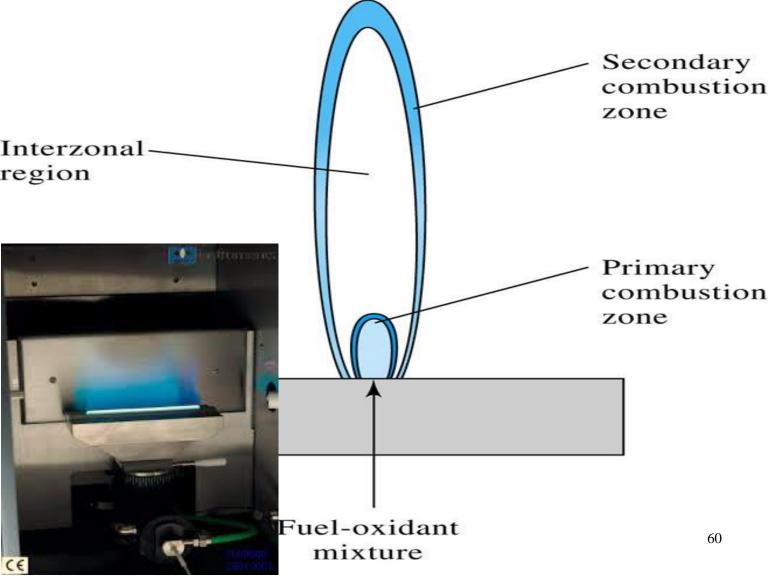
Disadvantages:


1. Flash back if $V_{\text{burning}} > V_{\text{flow}}$

2. ~90% of sample is lost


3. Large mixing volume

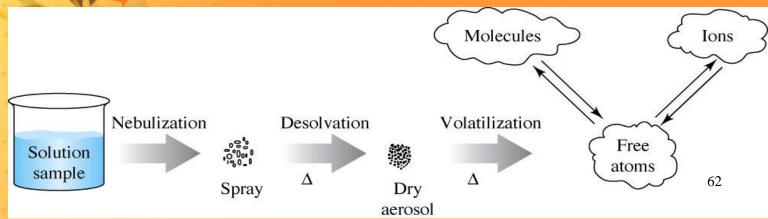

Types of Flame/Flame Structure – selection of correct flame region is important for optimal performance


- a) primary combustion zone blue inner cone (blue due to emission from C₂, CH & other radicals)
 - not in thermal equilibrium and not used
- b) interconal region
 - region of highest temperature (rich in free atoms)
 - often used in spectroscopy
 - can be narrower in some flames (hydrocarbon) tall in others (acetylene)
- c) outer cone
 - cooler region
 - rich in O₂ (due to surrounding air)
 - gives metal oxide formation

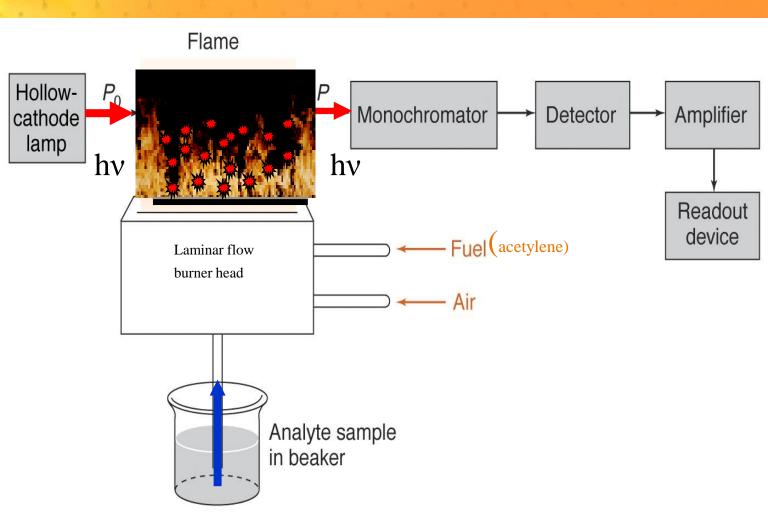
Flame profile: depends on type of fuel and oxidant and mixture ration

FLAMES in AAS

Different mixes and flow rates give different temperature profile in flame
 gives different degrees of excitation of compounds in path of light source


Fuel	Oxidant	Temperature, °C	Maximum Burning Velocity, cm s ⁻¹	5.0 E 4.0	1600 1400	1700 1750 1800 1830
Natural gas Hydrogen Hydrogen Acetylene Acetylene Acetylene	Air Oxygen Air Oxygen Air Oxygen Nitrous oxide	1700 - 1900 $2700 - 2800$ $2000 - 2100$ $2550 - 2700$ $2100 - 2400$ $3050 - 3150$ $2600 - 2800$	39-43 370-390 300-440 900-1400 158-266 1100-2480 285	Distance apove outlice, 2.0		

Sample A tomization – expose sample to flame or high-temperature


i. Need to break sample into atoms to observe atomic spectra

ii. Basic steps:

- a) <u>Nebulization</u> solution sample, get into fine droplets by spraying thru thin nozzle or passing over vibrating crystal.
- **b**) <u>Desolvation</u> heat droplets to evaporate off solvent just leaving analyte and other matrix compounds
- c) <u>Volatilization</u> convert solid analyte/matrix particles into gas phase
- d) <u>Dissociation</u> break-up molecules in gas phase into atoms.
- e) Ionization cause the atoms to become charged
- f) Excitation with light, heat, etc. for spectra measurement.

Flame Atomization

Sample Introduction Methods

The sample is in solution or solid form??

The method for sample introduction in atomic spectroscopy affects the:

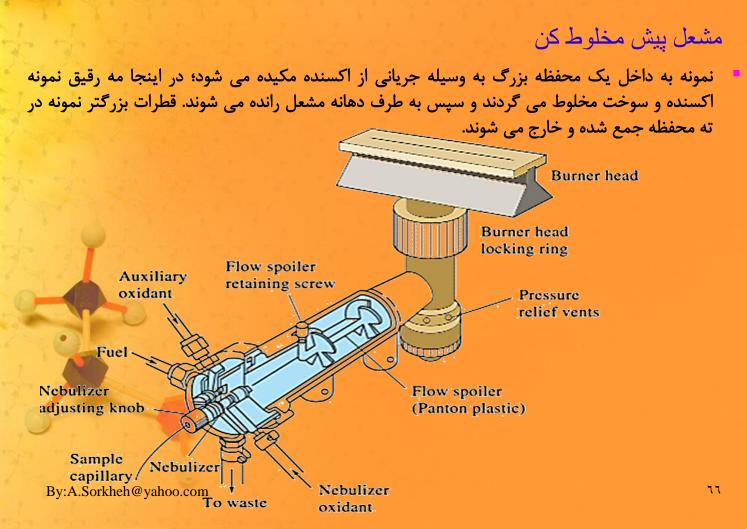
precision

accuracy

detection limit

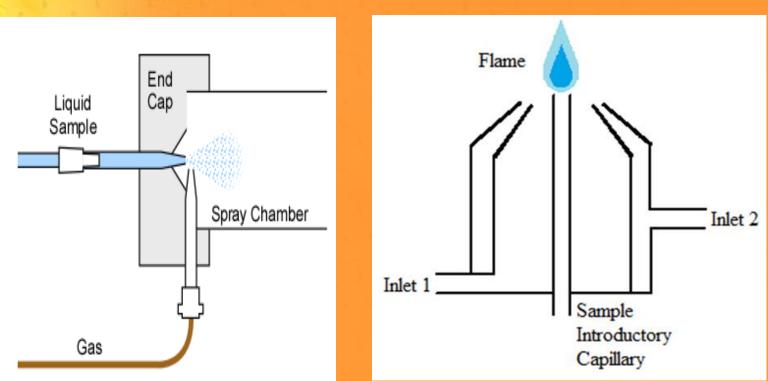
Introduction of Solution Samples

1. <u>Pneumatic Nebulizers</u>

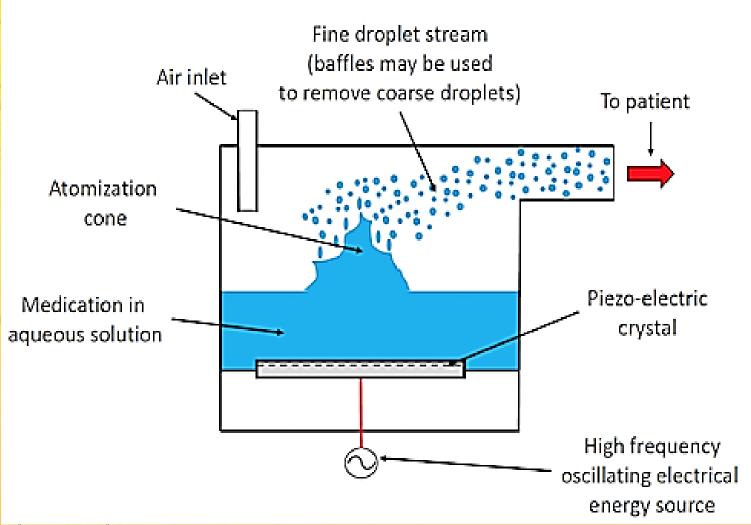

✓ For Samples in solution

 Nebulization converts the <u>solution</u> into an <u>aerosol</u> of very fine droplets using a jet of compressed gas.

 The flow of gas carries the aerosol droplets to the atomization chamber or region.


Several versions of nebulizers are available and few are shown in the figure below:

1. <u>Pneumatic Nebulizers</u>



مشعل تمام مصرف كن

 محلول، سوخت و گاز اکسنده از راهروهای جداگانه انتقال داده شده و د دهانه ای در پایه شعله با یکدیگر مخلوط می گردند.

2. Ultrasonic Nebulizers

Ultrasonic Nebulizers

Samples are pumped onto the surface of a piezoelectric crystal that vibrates in the kHz to MHz range.

Such vibrations *convert* samples into *homogeneous aerosols* that can be driven into atomizers.

Ultrasonic nebulization is preferred over pneumatic nebulization since finer droplets and more homogeneous aerosols are usually achieved.

However, most *instruments use pneumatic nebulization*.

By:A.Sorkheh@yahoo.com

3. Electrothermal Vaporization

An accurately measured quantity of sample (few mL) is introduced into an electrically heated cylindrical chamber through which an inert gas flows.

Usually, the cylinder is made of pyrolytic carbon but tungsten cylinders are now available.

The signal produced by instruments which use electrothermal vaporization (ETV) is a discrete signal for each sample injection.

Electrothemal vaporizers are called discrete atomizers to differentiate them from nebulizers which are called continuous atomizers

By:A.Sorkheh@yahoo.com

AA Techniques ► GRAPHITE FURNACE(Flameless atomizer)

(GFAAS) Graphite Furnace Atomic Absorption Spectroscopy

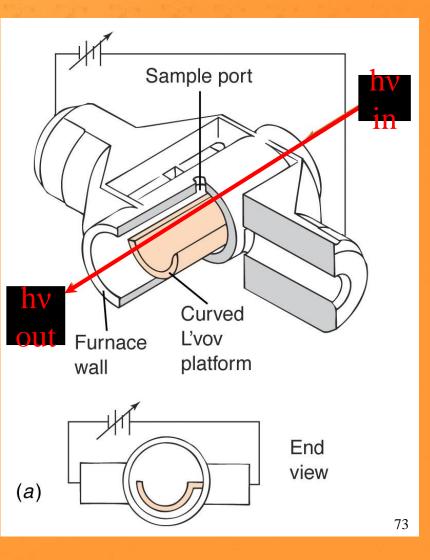
(ETAAS) Electro thermal Atomic Absorption Spectrometry
 Uses extremely SMALL sample volumes (20μL).

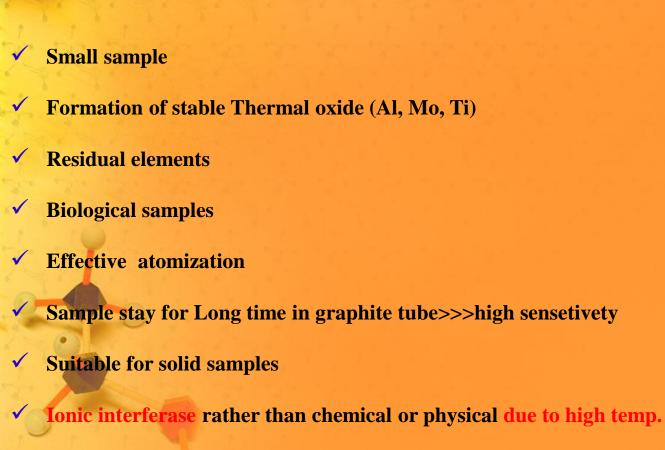
GFAAS Mechanism

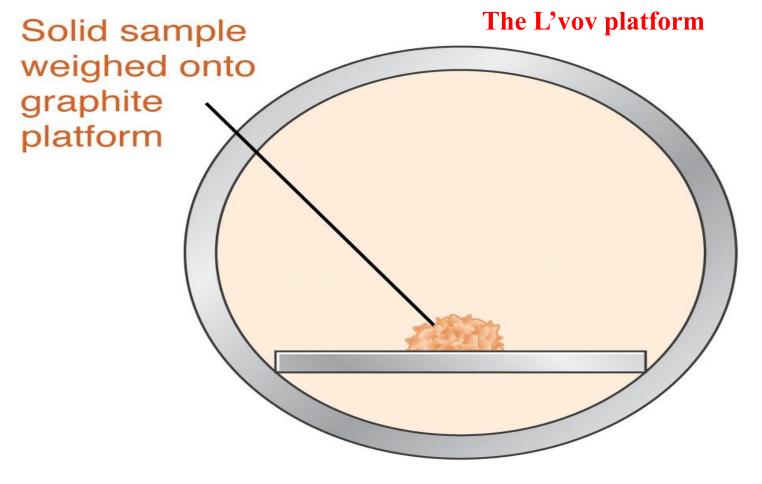
i.Runs a Temperature PROGRAM to DRY any liquid

ii.CHAR or ASH away any organic or matrix

iii.ATOMIZE the Analyte for PPB levels

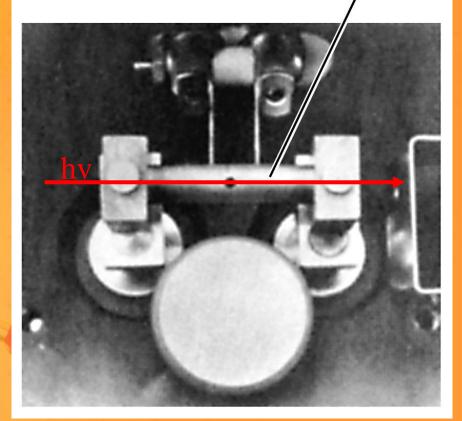

GFAAS requires a source of Cooling Water and Argon Gas to operate


Graphite furnace tube

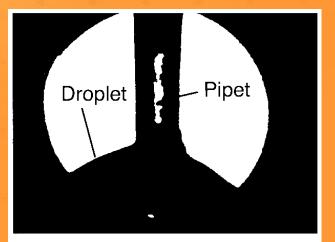


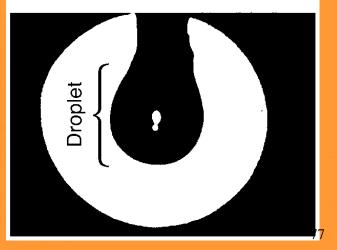
Advantages:

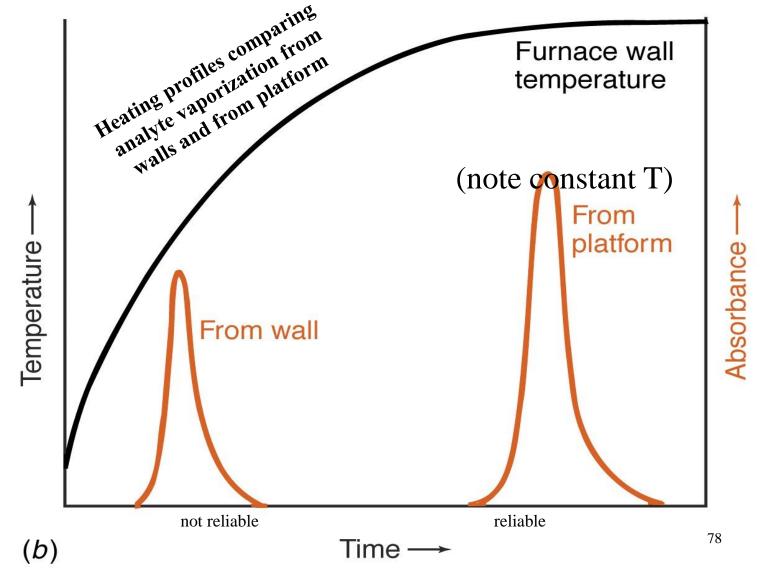
- highly sensitive down to pg of analyte
- long residence time
- more efficient than flame
- use with solid samples
- <u>Disadvantages</u>:
- poor reproducibility
- small analytical range

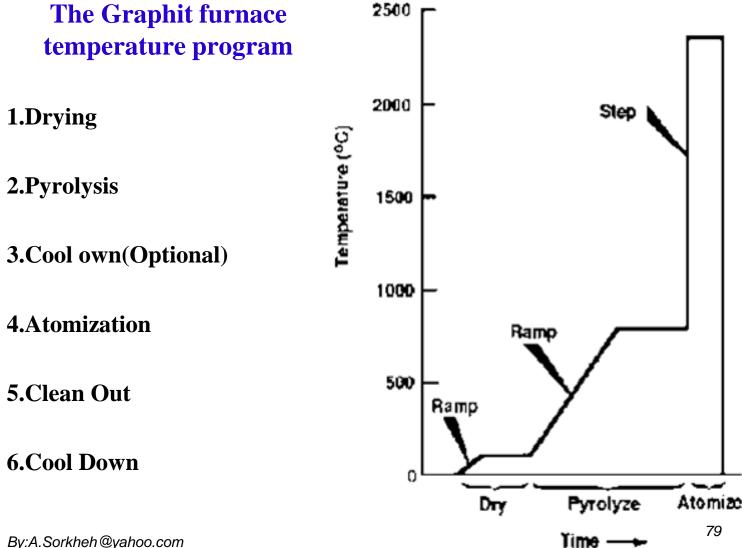


Direct solid sampling — end view of furnace 75

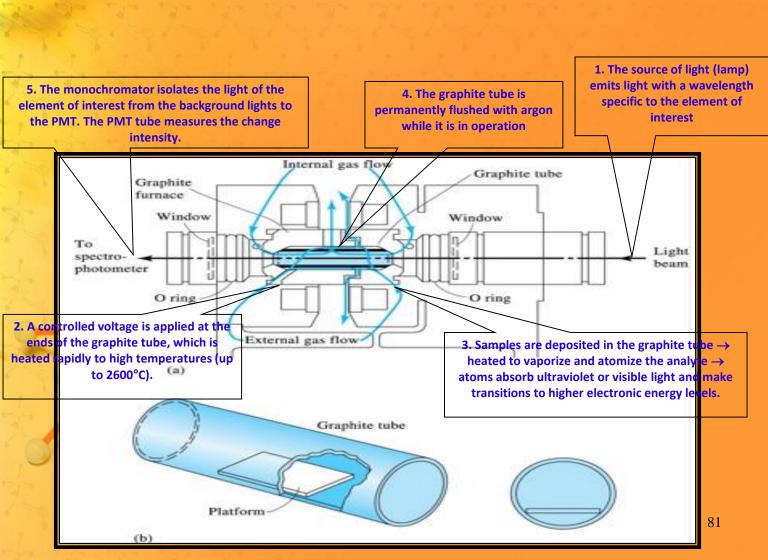



detector


source


✓ Correct position for injecting sample into graphite furnace

 ✓ If injection is too high, sample splatters and precision is poor

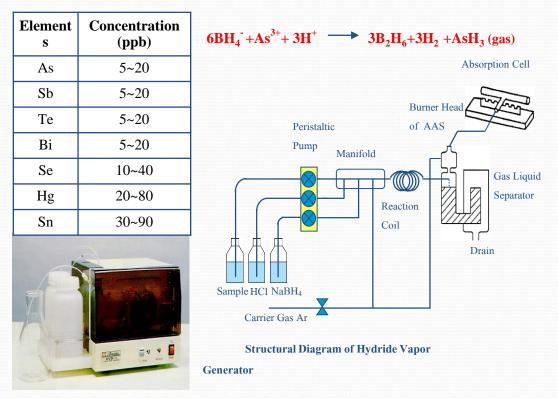


By:A.Sorkheh@yahoo.com

Graphite Furnace

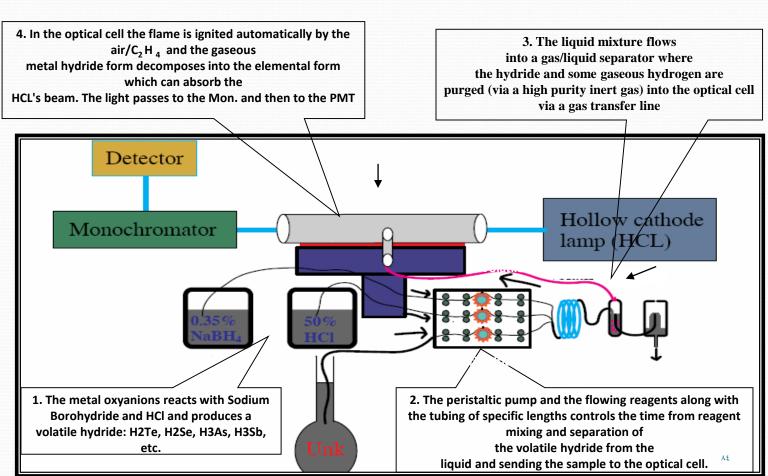
Asymize

3660°C

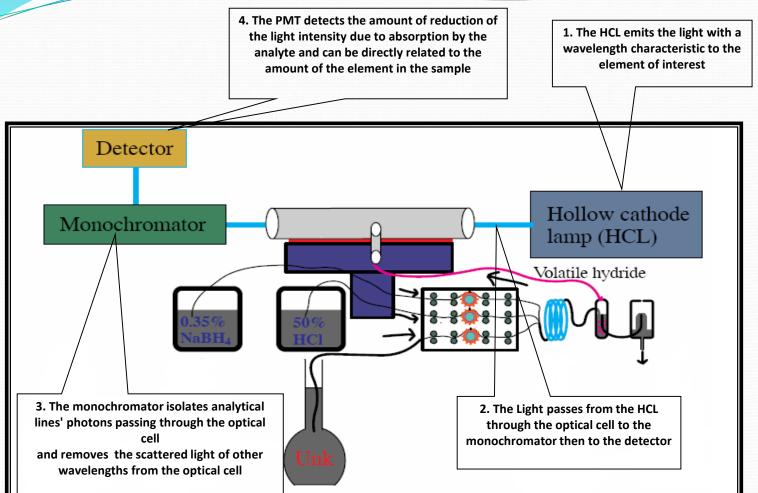


Chemical Modifiers for Specific Elements in GFAAS

Analyte	Modifier	Effect
As	Ni Pd	Permits a higher ashing temperature and enhances the signal
Cd	H3PO4+ Mg(NO3)2 NH4H2PO4 Pd	Conversion to less volatile phosphate which atomizes at a higher temperature
Pb	H3PO4+ Mg(NO3)2 NH4H2PO4 EDTA citrate oxalate	Permits a higher ashing temperature and stabilizes the signal


Hydride Vapor Generation Atomic Absorption Spectroscopy (HGAASC)

• As, Se, Sb, Sn, Te, Bi, Hg and other metals produce a metal hydride by this method



(HAAS) is very useful in case of interferences, poor reproducibility, and poor detection limits.

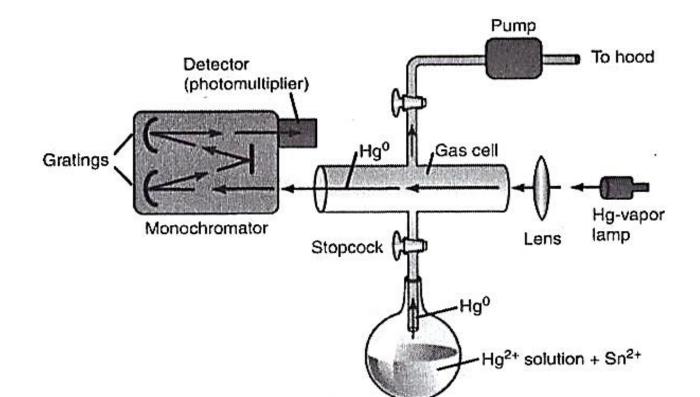
Sample flow in the (HGAAS)

Mechanism of the (HGAAS)

COLD-VAPOR or Flameless AAS (Mercury Cold Vapor)

The Metal, *MERCURY*, has the unique ability to ABSORB light in the Vapor state at ROOM Temperature. Since it does not require any HEAT to generate an ABS signal, this method is called <u>COLD-VAPOR</u> or Flameless AAS

Free mercury atoms can exist at room temperature can be analysed using atomic absorption without employing flame and graphite furnace techniques at high temperatures.


COLD-VAPOR Mechanism

a) Mercury is reduced in solution using stannous chloride or sodium borohydride in a closed system.

b) The reaction quantitatively releases mercury (from the sample solution) and is carried by a stream of air or argon through a quartz sample sell placed in the light path of an AA instrument for analysis.

The detection limit for mercury by this cold vapor technique is approximately 0.02 mg/L.

Cold vapor generation $Sn^{2+} + Hg^{2+} \rightarrow Sn^{4+} + Hg_{(L)}$

AAS Interferences

Any factor that affects the ground state population of the analyte element. **Factors that may affect the ability of the instrument to read this parameter.** A. Spectral interferences (Back ground Absorption of Source Radiation): Due to radiation overlapping than of the light source. Element other than the one of interest may absorb the wavelength being used **Back ground Absorption of Source Radiation Reasons** This is caused by the presence of a particle from incomplete atomization. This problem is overcome by increasing the flame temperature . Interferences are addressed by using a good quality HCL.

B) Chemical Interference - more common than spectral interference

1) Formation of Compounds of Low Volatility

- Anions + Cations \rightarrow Salt

 $Ca^{2+} + SO_4^{2-} \rightarrow CaSO_4$ (s)

- Decreases the amount of analyte atomized \rightarrow decreases the absorbance signal

- Avoid by:

> increase temperature of flame (increase atom production)

> add "releasing agents" – other items that bind to interfering ions eg. For Ca²⁺ detection add Sr²⁺

 $\mathrm{Sr}^{2+} + \mathrm{SO}_4^{2-} \rightarrow \mathrm{SrSO}_4(\mathrm{s})$

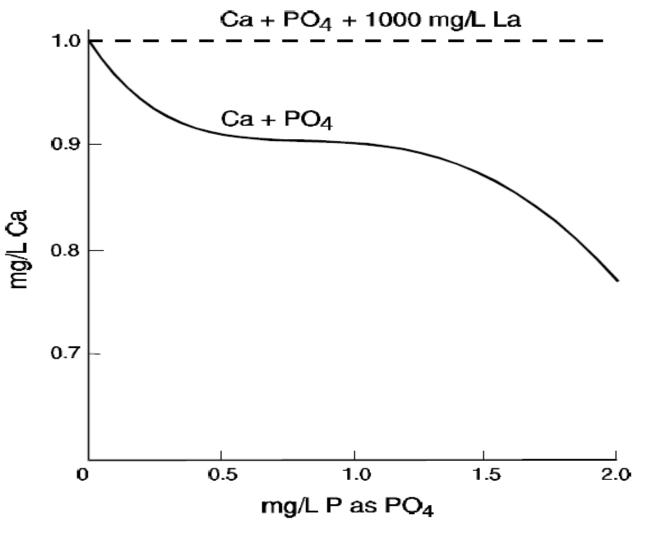
increases Ca atoms and Ca absorbance

> add "protecting agents" – bind to analyte but are volatile

eg. For Ca²⁺ detection add EDTA⁴⁻

 $Ca^{2+} + EDTA^{4-} \rightarrow CaEDTA^{2-} \rightarrow Ca$ atoms

2) Formation of Oxides/Hydroxides


 $M + O \gg MO$

A non-volatile & intense molecular absorbance

 $M + 2OH \gg M(OH)_2$

- M is analyte
- Avoid by:
 - > increase temperature of flame (increase atom production) ₉₀
 - > use less oxidant

By:A.Sorkheh@yahoo.com

3) Ionization Ionization of the analyte reduces the signal $M \gg M^+ + e^-$

- M is analyte
- Avoid by:
 - > lower temperature

> add ionization suppressor – creates high concentration of e⁻

suppresses M⁺ by shifting equilibrium.

	Ionization	Fraction Ionized at the Indicated Pressure and Temperature $p = 10^{-4}$ atm $p = 10^{-6}$ atm			
Element	Potential, eV	2000 K	3500 K	2000 K	3500 K
Cs	3.893	0.01	0.86	0.11	>0.99
Rb	4.176	0.004	0.74	0.04	>0.99
К	4.339	0.003	0.66	0.03	0.99
Na	5.138	0.0003	0.26	0.003	0.90
Li	5.390	0.0001	0.18	0.001	0.82
Ba	5.210	0.0006	0.41	0.006	0.95
Sr	5.692	0.0001	0.21	0.001	0.87
Ca	6.111	3×10^{-5}	0.11	0.0003	0.67
Mg	7.644	4×10^{-7}	0.01	4×10^{-6}	0.09

*Data from B. L. Vallee and R. E. Thiers, in Treatise on Analytical Chemistry, I. M. Kolthoff and P. J. Elving, Eds., Part I, Vol. 6, p. 3500. New York: Interscience. 1965. Reprinted with permission of John Wiley & Sons, Inc.

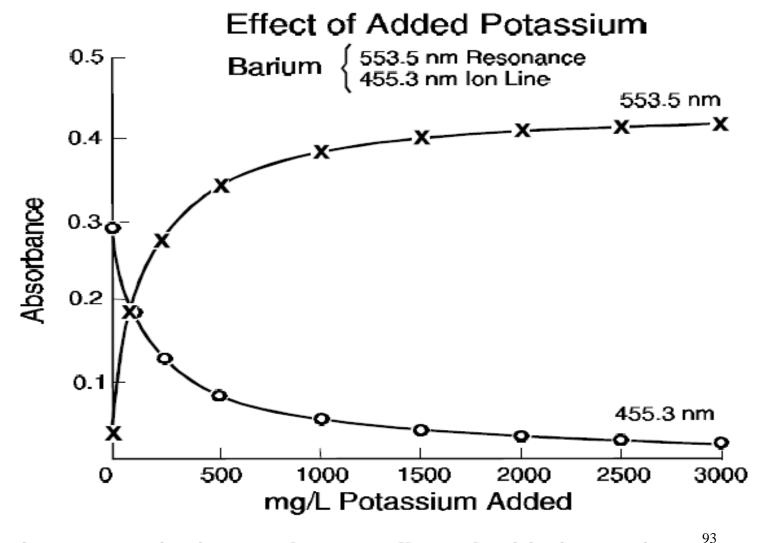
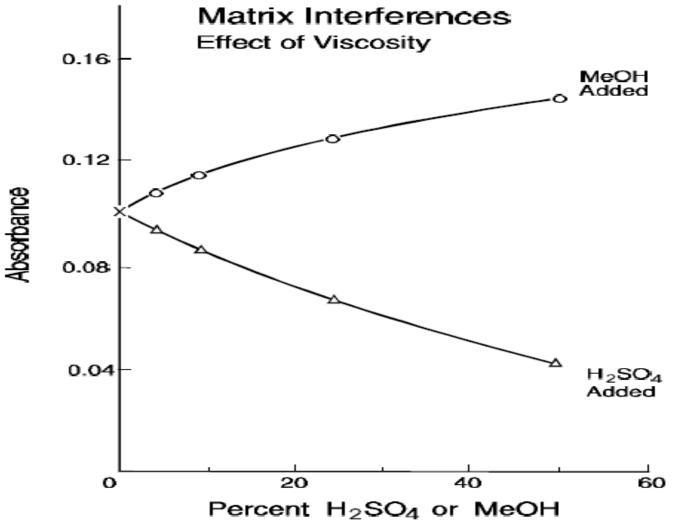


Figure 16. Ionization Interference Effect of Added Potassium


C) Matrix interferences:

Due to differences between surface tension and viscosity of test solutions and standards.

✓ Errors are minimized by using Matrix Modifiers and Reagents...

D) <u>**Transport Interference :**</u>

Rate of aspiration, nebulization, or transport of the sample (e g viscosity, surface tension, vapor pressure, and density).

95

E) Broadening of a spectral line

1) **Doppler effect:**

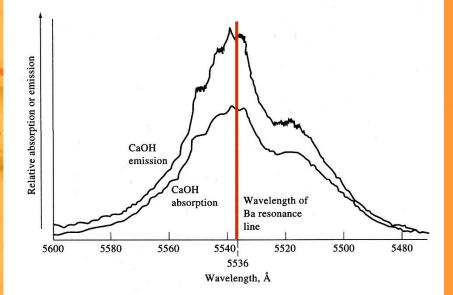
✓ This effect arises because atoms will have different components of velocity along the line of observation.

2) Lorentz effect:

✓ This effect occurs as a result of the concentration of foreign atoms present in the environment of the emitting or absorbing atoms. The magnitude of the broadening varies with the pressure of the foreign gases and their physical properties.

3) <u>Quenching effect</u>:

✓ In a low-pressure spectral source, quenching collision can occur in flames as the result of the presence of foreign gas molecules with vibration levels very close to the excited state of the resonance line.


Self absorption or self-reversal effect

✓ Self absorption the atoms of the same kind that are absorbing radiation will absorb more at the center of the line than at the wings ,and thus resulting in the change of shape of the line as well as its intensity

BACKGROUND Correction

A)Corrections For Spectral Interferences Due to Matrix

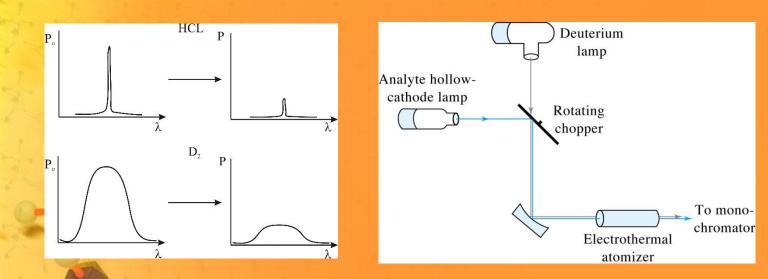
- Molecular species may be present in flame
- Problem if absorbance spectra overlap since molecular spectrum is much broader with a greater net absorbance
- ✓ Need way of subtracting these factors out

Methods for Correction

1) Two-line method
monitor absorbance at two line close together

One line from sample one from light source
Second I from impurity in HCL cathode, Ne or Ar gas in HCL, etc

second line must not be absorbed by analyte

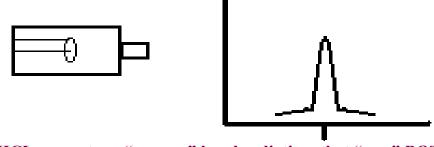

absorbed by molecular species, since spectrum much broader
A & e are ~ constant if two line close
omparing A₁₁, A₁₂ allows correction for absorbance for molecular species

 A_{11} (atom&molecule) – A_{12} (molecule) = A (atom)

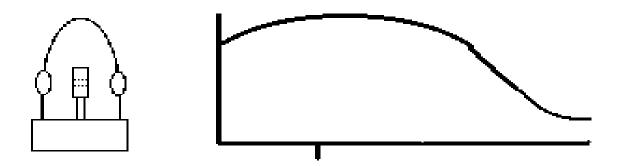
<u>Problem</u>: Difficult to get useful second I with desired characteristics

2) Continuous source method

- alternatively place light from HCL or a continuous source D₂ lamp thru flame
- HCL → absorbance of atoms + molecules
- $D_2 \rightarrow$ absorbance of molecules


Advantage:

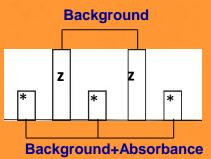
-available in most instruments

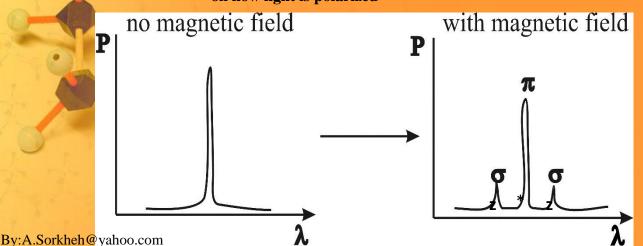

-easy to do

Disadvantage:

-difficult to perfectly match lamps (can give + or – errors)

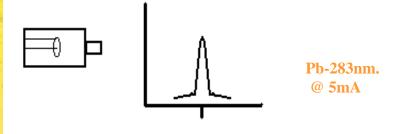
HCL generates a "narrow" band radiation, that "sees" BOTH Element-Specific AND Background Non-Specific Absorbances


D2 Lamp creates a "continuum" of "BROAD band radiation, that ONLY "sees" other BROAD band signals, such as BACKGROUND


3) Zeeman Effect

P

- Placing gaseous atoms in magnetic field causes non-random orientation of atoms
- Not apparent for molecules
- Splitting of electronic energy levels occurs (~ 0.01 nm)
- Sum of split absorbance lines \rightarrow original line
- Only absorb light with same orientation
- Can use Zeeman effect to remove background


> place flame polarized light through sample in magnetic field get absorbance (atom+molecule) or absorbance (molecule) depending on how light is polarized

101

BKG Correction: VGP

Low CURRENTS for Analytical Measurements create a "narrow" band source of radiation

High CURRENTS (>500mA) are used to form the GIANT PULSE as a "broad", wide band; to make it SIMILAR to the D2 Continuum for reading ONLY signals from the BACKGROUND For any Analytical wavelengths outside the 180-400nm. Range for the D2 Lamp, Variable <u>GIANT PULSE</u> Correction will work for many applications **Sample preparation Methods**

Careful techniques must be used to Collect, Preserve and then PREPARE the Sample so it can be run on the AAS Instrument.

Samples MUST be in the form of a clear, particle-free Solution

These Solutions can be based on an Aqueous (water) or Organic (solvent) matrix

Calibration materials (Blank and Standards) must be prepared with the SAME procedures as the Samples

Sample PREPARATION

Some of the common procedures for AAS:

Open Beaker Acid Digestion
 Closed Vessel Pressure Digestion
 Soxhlet Solvent Extraction
 Muffle-Furnace Ashing
 Sonication
 Centrifugation
 Simple Filtration

Wet Digestion Methods

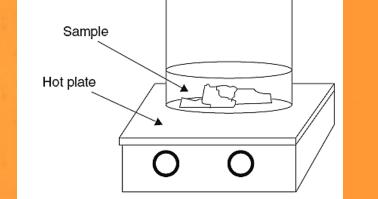
• The common methods used for dissolving samples for metals analysis are :

Digestion in open flask

Digestion in a pressurized sealed container

Microwave assisted decomposition

Reagents Commonly used in Sample Dissolution or Digestion


Reagent	Sample Type	
Water	Soluble salt	
Dilute acids	Dry-ashed sample residues, easily oxidized metals and alloys, salts	
Concentrates acid (e.g., HNO ₃)	Less readily oxidized metals and alloys, steels, metal oxides	
Concentrates acid + oxidizing agent	Metals, alloys, soils, particulates from air, refractory minerals, vegetable matter	
Hydrofluoric acid	Silicates and other rock samples	

Acid Digestion-Wet Ashing

- The simplest method for wet digestion is carried out in an open container.
- Samples are dried, weighed, and placed in a beaker. The digestion reagent is added.

• The beaker is covered with a watch glass and placed on a hot plate.

Watchglass

By:A.Sorkheh@yahoo.com

Aggressive acid digestion

By:A.Sorkheh@yahoo.com

• For samples that show significant losses of analyte due to the retention of metals in silica residues, the sample is first digested thoroughly with HNO_3 in a PTFE beaker. Then concentrated $HClO_4$ and a small amount of HF are added.

• A mixture of an oxidizing acid with HF provides acidity, oxidizing power, and complexation to dissolve all metals and alloys and most refractory minerals, soils, rocks, and sediments.

Microwave Digestion

- Advantages of digestion in a closed container :
 - The containers are fabricated of high-temp polymers, which are less likely to contain metal contaminants than are glass or ceramic beakers or crucibles.
 - The sealed container eliminates the chance of airborne dust contamination.
 - The sealed container reduce evaporation, so that less acid digestion solution is required.
 - The sealed container also eliminates losses of more volatile metal species, which can be a problem in open container.
 - The electronic controls on modern microwave digesters allow very reproducible digestion conditions.

Dry Ashing

- For samples that contain much organic matter, which are analyzed for nonvolatile metals, dry ashing is a relatively simple method of removing the organic matter.
 - A general procedure is to place the weighed sample into a platinum or glass crucible and heat it in a furnace to a white ash. The temperature should be kept at 400 to 450°C if any of the more volatile metals are being determined. Salts or sulfuric acid may be added, if needed, and a final ashing step can be done with HF if required. The residue is then dissolved in concentrated nitric acid and water, and diluted to volume. The final concentration of acid should be between 1 and 5%.

•

Extraction, Separation, and concentration

It is not always necessary or required to digest the entire sample in order to free the metal for analysis. The analyte of interest may be present as a soluble salt from a pollution source or being present in the structure of the mineral crystals.

Organic extraction of metals (LLE)
 Extraction with Supercritical Fluids
 Ultrasonic sample preparation
 Solid-Phase Extraction for preconcentration

Calibration Equipment

STANDARD Solutions for Calibration of all Atomic Absorption instrumentation should be NIST/NBS or ISO / IUPAC Certified for true Accuracy

Selecting the Number of Standards

- * How can we select our calibration standards properly?
- **1. One Cal Standard**: If all our samples are in the linear range (less than 0.20–0.30Absorbance), then one calibration standard (S1) can be used.

- 2. Two calibration standards: are used when we exceed the linear range.
- Usually S2 should be 3× the concentration of S1.

If we know we are exceeding the linear range, how can we decide whether to use two or three calibration standards?

There is an easy procedure to follow:

1. Make up three standards. The first one should be at the top of the linear range. The concentration of the second standard should be approximately 3× the concentration of the first. The concentration of the third standard should be approximately 6× the concentration of the first standard (6:3:1 rule).

Set up your atomic absorption instrument in the concentration mode. Autozero on the blank. Set your first standard to be S1. Calibrate with your second standard to S2. READ your third standard. If its value is within 10% of the expected value, make your third standard = S2 and drop your second standard. You have slight curvature and should use only two calibration standards.

2.

3. If your third standard deviates more than 10% from the expected value, your curvature is more severe and three calibration standards are necessary. Keep S2, and enter your third standard as S3. Seldom are more than three standards required for accurate calibration. However, when you are using more than three calibration standards, insert them between the standards that you determined using the 6:3:1 rule so that they are spaced along the calibration curve.

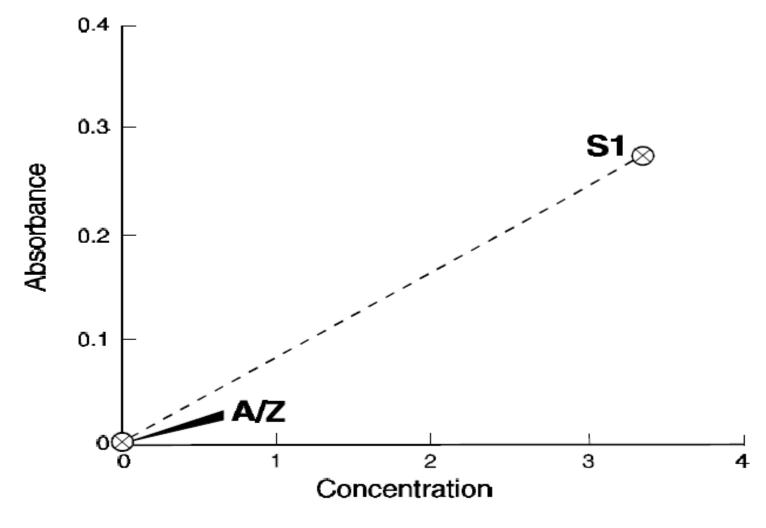


Figure 10. One Calibration Standard (Linear Plot)

117

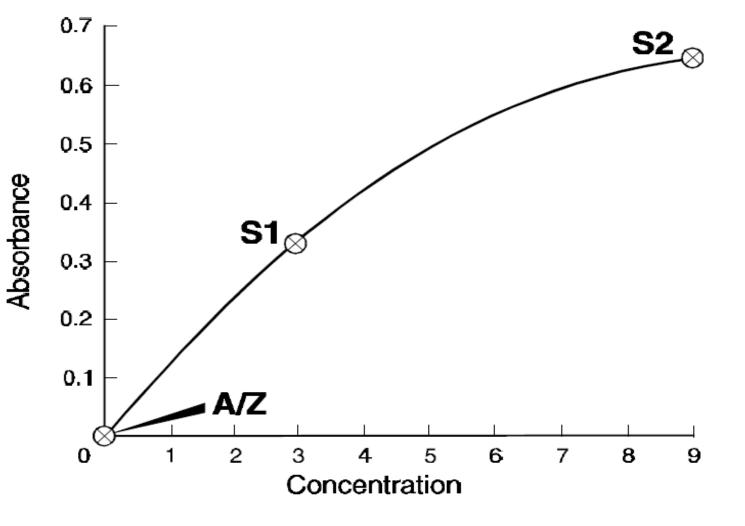
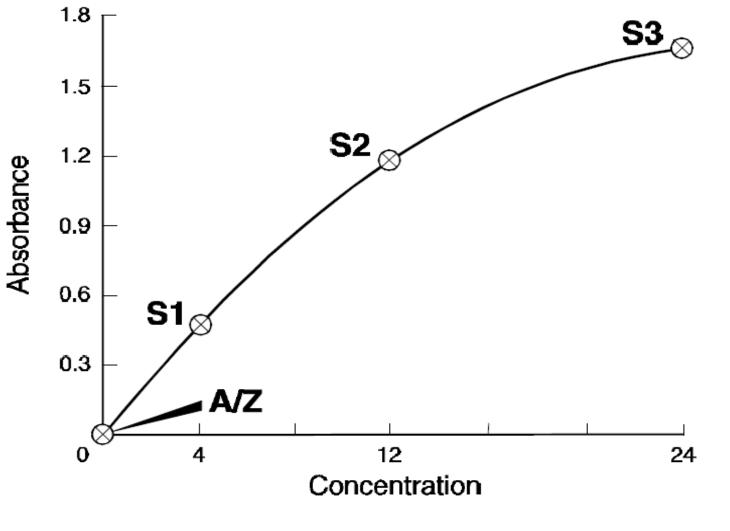



Figure 11. Calibration Curve for 2 Calibration Standards

118

By:A.Sorkheh@yahoo.com

Figure 12. Calibration Curve for 3 Calibration Standards

119

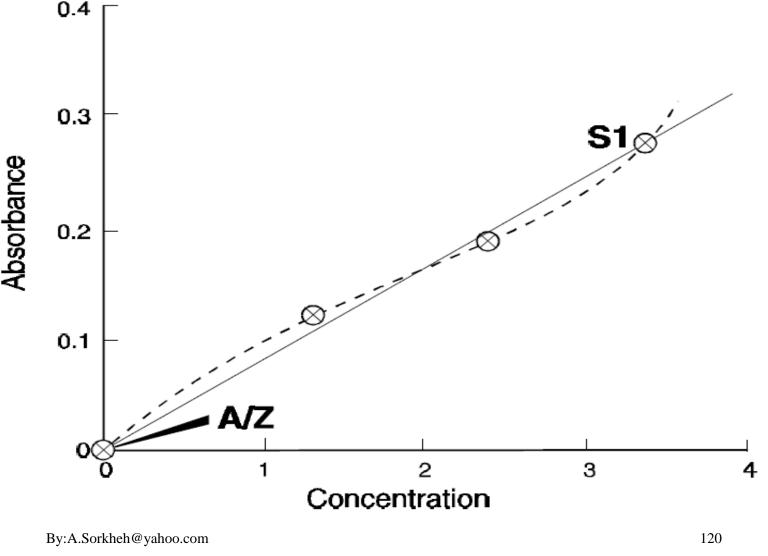
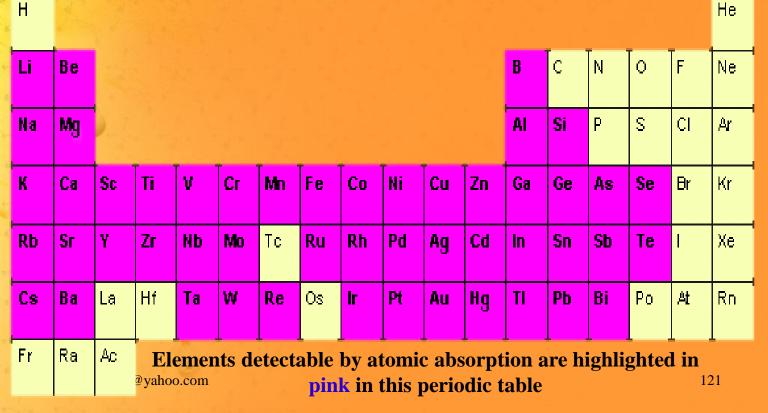
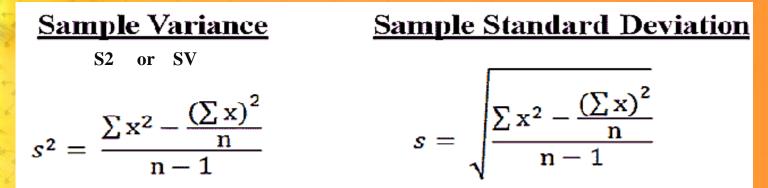



Figure 13. Three Calibration Points in Linear Range - S-Shaped Curve

APPLICATIONS

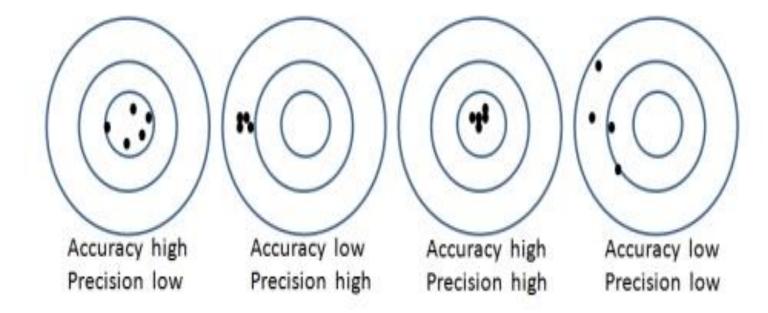

50+ Metallic Elements of the Periodic Table can be determined by Flame or Furnace AAS from the 0.0001% to 100% concentrations

LOD & LOQ

Limit of detection (LOD) and limit of quantification (LOQ) are two important performance characteristics in method validation. LOD and LOQ are terms used to describe the smallest concentration of an analyte that can be reliably measured by an analytical procedure.

In <u>analytical chemistry</u>, the detection limit, lower limit of detection, or LOD (limit of detection), is the lowest quantity of a substance that can be distinguished from the absence of that substance (a *blank value*) within a stated <u>confidence limit</u> (generally 1%)

How can I calculate LOD in Hg analysis by AAS (sample type: Fish)? I need to calculate LOD in Hg analysis of fish sample. My method is; Blank: put 10 mL nitric in microwave vessels and run the program and volume up to 50 mL and read (result received in microgram/L) Sample: take 1 g sample+10 mL nitric acid in microwave vessels, then run the program,


My equation is for LOD=mean+ 3*standard deviation

But I receive blank reading in microgram/L unit (See attached excel sheet), then how I calculate LOD? Can you give the example or correct my excel sheet ¹²³

Sample type : Fish		
Sample No	Blank reading (µg/L)	
1	2.24	
2	0.00	
3	0.92	
4	1.58	
5	0.67	
6	0.55	
7	0.35	
8	0.76	
9	0.19	
10	0.00	
11	0.73	
12	0.00	
13	0.36	
14	0.39	
15	0.14	
Mean	0.59	Г
Standard		
deviation	0.62	
LOD	2.46	

LOD=mean+ 3*standard deviation LOD=mean+ 3*standard deviation OR $LOD = \frac{SV}{R^2} * 3$ **LOD is Theoryic** $LOQ = \frac{SV}{R^2} * 10$ **LOD** is Practical **R^2** of calibration curve

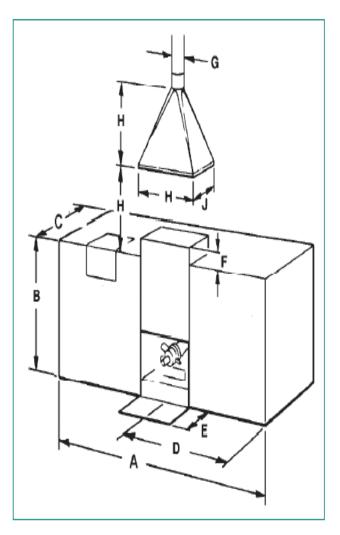
Accuracy & Precision

Techniques for elemental analysis

~	ICP-MS	ICP-AES	FAAS	GFAAS
Detection Limits	Excellent	Good	Good	Excellent
Productivity	Excellent	Very good	Good	Low
LDR	10 ⁵	10 ⁶ /10 ^{10 HDD}	10 ³	10 ²
Precision	1-3 %	0.3-2 %	0.1-1 %	1-5 %
Spectral interference	Few	Common	Almost no	one Very few
Chemical interference	Moderate	Few	Many	Many
lonization	Minimal	Minimal	Some	Minimal
Mass efffects	High on low	none	none	none
Isotopes	Yes	none	none	none
Dissolved solids	0.1-0.4 %	up to 30 %	0.5-3 %	up to 30 %
No. of elements	~75	~73	~68	~50
Sample usage	low	medium	high	very low
Semi-quantitative	yes	yes	no	no
Isotope analysis	yes	no	no	no
routine operation	Skill required	easy	easy	skill required
Method development	skill required	skill required	easy	skill required
Running costs	high	high	low	medium
Capital costs	very high	high	low	medium

Parameters	AAS	GFAAS	ICP – MS
Temperature	$2300^\circ\mathrm{C}-2700^\circ\mathrm{C}$	3000°C	6000°C
Radiation used	UV, VISIBLE	UV, VISIBLE	n. (1.1.1.1.1 .1)
Detection limit	Ppm	Ррь	Ppt
Elements applicable to	68+	50+	82
Sample throughput	10-15 sec per element	3-4 min per element	All elements <1 minute
Sample volume required	Large	Very small	Very small to medium
Isotopic analysis	No	No	Yes
typical consumable items and utilities required	acetylene/nitrous oxide gases (compressed air source) hollow cathode lamps reagents and standards power	argon gas hollow cathode lamps graphite tubes and cones reagents and standards power cooling water	argon gas quartz torches sampling and skimmer cones reagents and standards pump tubing power cooling water

Operating instructions for VARIAN 280FS Spectrophotometer Exhaust Vent


Exhaust venting is important for a number of reasons:

1.It will protect laboratory personnel from toxic vapors which may be produced by some samples.

2.It will tend to remove the effects of room drafts and the laboratory atmosphere on flame stability.

3. It will help to protect the instrument from corrosive vapors which may originate from the samples.

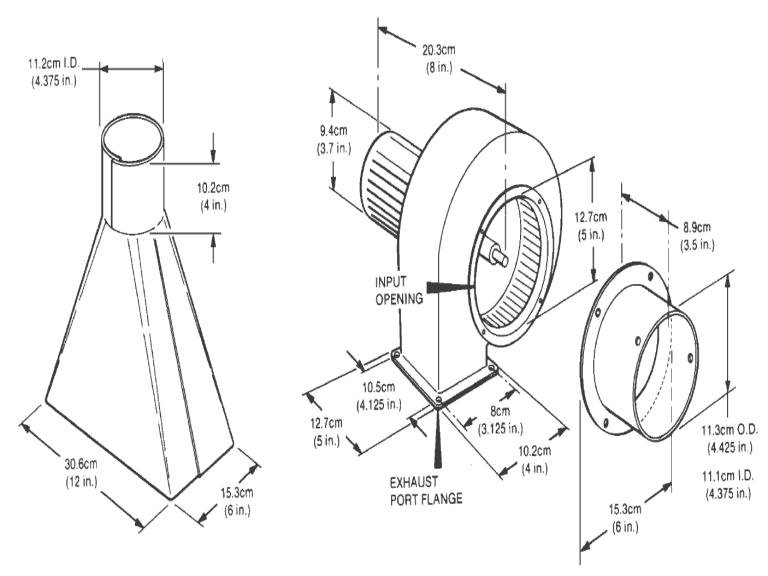
4.It will remove dissipated heat which is produced by the flame or furnace.

A = length

B = height to top of cover

C = depth

D = distance from center of atomizer compartment to right hand edge of instrument


E = protuberance of sample tray in front of instrument

F = height of flame shield above top of instrument cover

G = 10 cm (4 inches) in all cases

H = 30 cm (12 inches) in all cases

J = 15 cm (6 inches) in all cases

Operating instructions for VARIAN 280FS Spectrophotometer Lamp installment

1. Install the recommended <u>light source</u>, position the lamp so that is held by two springs in the lamp holder.

2. Press the *POWER* button on the *control panel* to turn on the instrument.

3. Turn the <u>SIGNAL</u> control knob to LAMP, the AA/BG switch to AA, and turn GAIN fully counterclockwise.

4. Turn the LAMP CURRENT CONTROL (F) clockwise until the ENERGY/LAMP METER (E) shows the proper value indicated on the lamp label.

5. Change the <u>SIGNAL</u> control knob to SET UP. Set the SLIT (A) to the proper value and adjust the COARSE ADJUST WAVELENGTH CONTROL (D) to the correct setting on the WAVELENGTH COUNTER (B) (refer to the Analytical Methods Manual for proper settings for the element of interest).

6. Turn the FINE ADJUST WAVELENGTH CONTROL (C) slowly to obtain maximum needle deflection to the right on the ENERGY/LAMP meter (E). With the GAIN control knob (G) keep the needle on scale.

7. Turn the two alignment knobs on the lamp holder to maximize the ENERGY/LAMP meter (E) reading.

8. Close the lamp compartment.

9. Change the *SIGNAL* control knob to ABS and proceed to ignite the flame. ¹³¹

A 😔 Slit Selector

B Wavelength Counter

C • Fine Adjust Wavelength Control

D � Coarse Adjust Wavelength Control

E Q Energy/Lamp Meter

F & Lamp Current Control

G 🚱 Gain Control

By:A.Sorkheh@yahoo.com

Gas ignition

1. Turn the *POWER switch* of the gas control (K) to the ON position.

2. Turn on the vent hood to remove fumes and vapors from the flame.

3. Switch the **OXIDANT SELECTOR VALVE** (I) to air. The air supply for the AA in room 263 comes from a central source and an oil-filter is used to maintain the air free of oil and dust .

4. Switch the FUEL VALVE (C) to the on position (For most of the analyses acetylene is the fuel).

5.Once the fuel and oxidant flow meter are set at 30 and 55 (arbitrary units) respectively, ignite the burner by pressing the IGNITE button (E).

- A Fuel Pressure Gauge
- **B Oxidant Pressure Gauge**
- C 😔 Fuel Toggle Valve
- **D �** Fuel and Oxidant Flowmeters
- E 😔 Ignite Button
- **F** Fuel Pressure Regulator
- **G** Oxidant Pressure Regulator
- H � Fuel Flow Needle Valve
- I � Oxidant Selector Valve
- J � Oxidant Flow Needle Valve
- K � Power ON/OFF Switch

Gas Flow Adjustment

N20 Gauge

For many elements, the fuel/oxidant ratio must be adjusted for maximum sensitivity.

Actylene Gauge

Acetylene

For most air-acetylene flames, the acetylene flow used is about 4 liters/min or 0.14 cubic feet/min.

Acetylene is dissolved in acetone in order to prevent explosive decomposition when compressed to greater than about 30 psi.

Failure to change the acetylene cylinder before the cylinder pressure drops below <u>600 kPa (85 psig)</u> may <u>cause damage to valves</u> or tubing within the burner gas control system due to high acetone carryover

To provide a margin of safety, acetylene should not be used above 15 psi line pressure.

For some elements, absorption sensitivity will change as the amount of acetone increases, so it is a good practice to replace the cylinder when the pressure falls to between 75 and 100 psi.

- Minimize the amount of acetone which is carried over with the acetylene by:
 - **'Cracking'** the bottle before use by gently opening the valve to check for any drops or spray of acetone. Any bottle showing acetone should be returned to the supplier for replacement.
 - **Storing and using the bottles in the vertical position.**
- **Using only one instrument per bottle.**
- **Using only 'instrument' grade acetylene.**
- ✓ Replacing bottles when the pressure drops to 750 kPa (100 psi).

Nitrous Oxide

✓ The N2O is in the liquid state, at an initial pressure of about 750 psi.

✓ A nitrous oxide-acetylene flame consumes about 20 liters per minute of N2O at 50 psi;

✓ When N2O is removed from the cylinder at this rate the expanding gas cools the diaphragm of the regulator so that sometimes it freezes, causing loss of regulation.

✓ All lines carrying N2O should be free of grease, oil or other organic material, as it is possible for spontaneous combustion to occur.

✓ For the nitrous oxide-acetylene flame, the acetylene flow is about 14 liters/min or 0.5 cubic feet per min.

Air is the most common oxidant and can be obtained from either a compressed air cylinder or from a compressor unit

> The premix burner-Nebulizer will use about 20 liters per minute

General Purpose Compressed Air is suitable instrument use.

> Air cylinders are operated at 50psi utilizing a two-stage regulator

The compressor should provide at least 30 liters per minute at 50 psi, with a water and oil trap installed between the compressor

Hydrogen

- > In certain applications hydrogen is used as the
- > The extra dry grade (99.9+% purity) is suitable for atomic absorption work.
- > An air-hydrogen flame requires about 15 liters per minute
- ➤ The air-hydrogen flame is invisible under normal circumstances, and extra caution should be excersized when using this flame.
- Do not place hand on or lean over a burner where hydrogen is being used in case the flame is actually lit.
- Always test first by placing a shiny surface above the region of combustion; the formation of water vapor indicates that the flame is lit.
 - Hydrogen cylinders are used at high pressure and should be handled with care at all times.
- > They are operated at 40psi using a two-stage regulator

Argon is generally used in conjunction with hydrogen :
 As a flame diluent to provide a cool flame
 As a purge gas in the analysis of hydride-forming metals

✓ As a sheathing gas in graphite furnace work.

High purity grade (99.998%) Grade Argon is good for most analyses.

Argon in the prepurified grade (99.995%) can also be used but is not recommended for the Graphite Furnace since the grade often contains a small amount of oxygen which may shorten tube life.

Nitrogen is used similarly to argon, and therefore the consumption rates vary widely with the application.

The high purity grade (99.9%) or the extra dry grade (99.7%) is suitable for atomic absorption work.

Nitrogen cylinders are used at high pressure and should be handled with care at all times.

Burner alignment

- In order to make sure that burner is correctly aligned check that the slot in the burner head is parallel to, and slightly below the sample beam. This procedure will only need to be carried out when changing burner heads.
- In the control panel, set the <u>SIGNAL</u> control knob to ABS and the <u>MODE</u> control to continuous.
 Press the <u>AZ</u> (auto zero) key to set the display to zero.

2. Raise the burner head with the **VERTICAL ADJUST KNOB** until an absorbance is indicated on the display.

3. Slowly lower the burner head with the vertical adjust until it s just below the source beam. The display must be at zero.

4. Ignite gases as describe in the <u>GAS IGNITION</u> section.

5. Aspirate a standard that provides an absorbance of 0.2 to 0.6 units and adjust the position of the burner head by turning the <u>HORIZONTAL ADJUST KNOB</u> until maximum absorbance is indicated. 143

6. Turn the **ROTATIONAL ADJUST KNOB** to obtain maximum absorbance.

Burner Adjustment

Adjustment of the burner head relative to the light path of the instrument is necessary to obtain maximum sensitivity.

Clean the burner frequently — never allow the burner to clog, and wash it thoroughly both inside and out.

Nebulizer Adjustment

Set up the instrument for the determination of copper, magnesium, or other elements which have an absorbing wavelength above 250 nm and whose sensitivity is not dependent on the fuel/oxidant ratio.(in 90° (Vertical) positon toward the HCL)

Do not select an element requiring a nitrous oxide-acetylene flame.

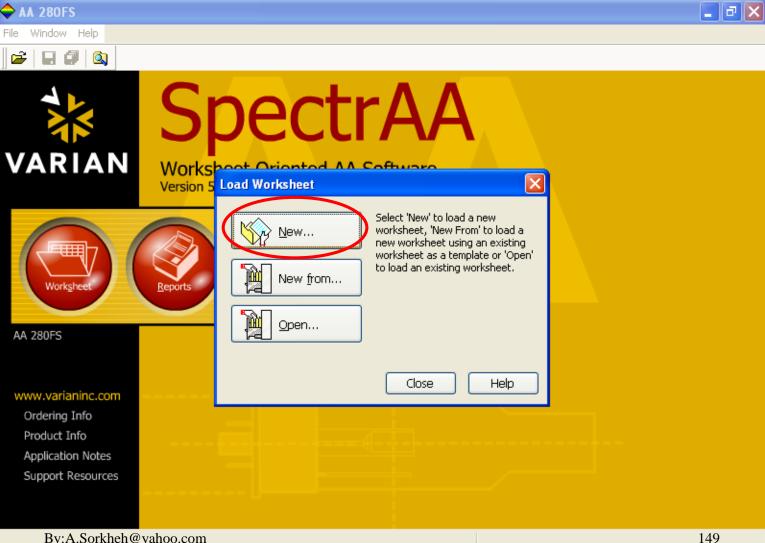
Calibration

1. Set the <u>SIGNAL</u> control to concentration.

2. Through the keyboard enter the value for the lowest standard then press the <u>S1 key</u>, repeat for standard two and three. Model 460 measures the absorbance of each standard, equates it to the concentration and constructs an appropriate calibration curve.

3. Enter the integration time through the keyboard and press the <u>INT</u> button to enter the interval (0.2 � 60 seconds).

4. Aspirate a blank solution and press the <u>AZ key</u> (auto zero).


5. Aspirate the standard representing S1 and press the S1 key. Repeat for the remaining standards in order of increasing concentration.

6. Since some degradation in calibration may occur the operator is urge to recalibrate after reading various samples.

7. For Flame Emission analyses remove or unplug any hollow cathode lamp is in the lamp compartment. Set the SIGNAL switch to EM CHOP with the appropriate slit and wavelength for the element of interest and repeat steps 2 through 6.

By:A.Sorkheh@yahoo.com

ب،ط 02:33 🕒 🔇 EN

AA 280FS

2

VARIAN

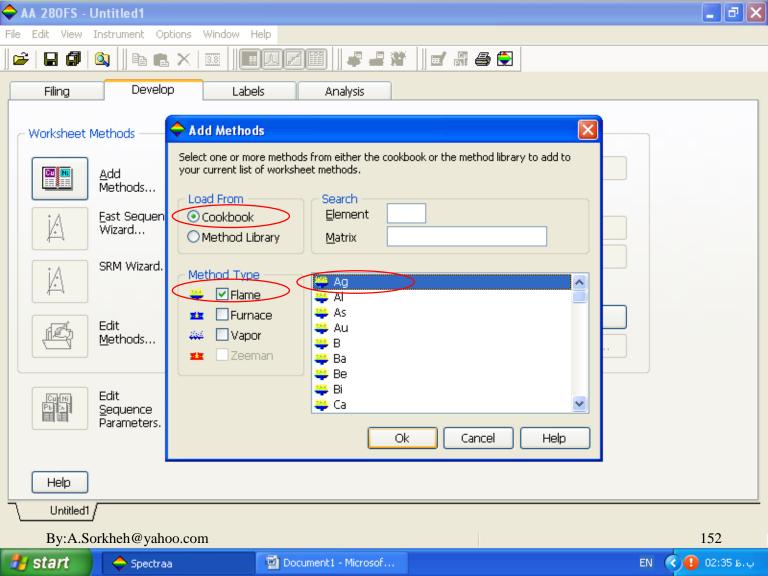
ø

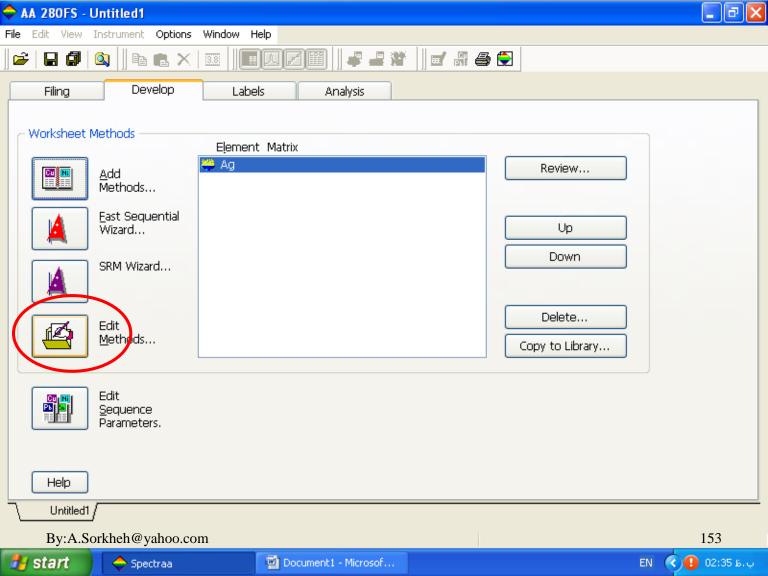

٩

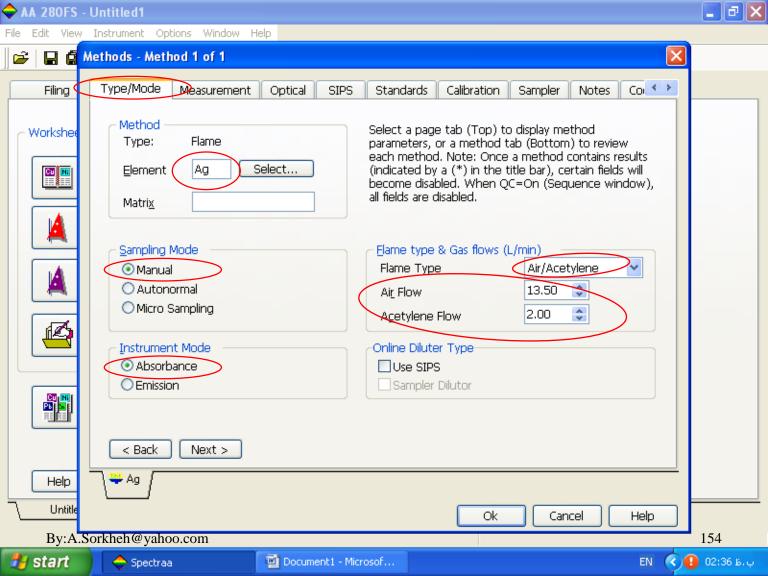
AA 280FS

www.varianinc.com

- Ordering Info Product Info
- Application Notes
- Support Resources




By:A.Sorkheh@yahoo.com


🔶 Spectraa

150

🔶 M	280FS -	Untitled1		_ 7 🛛
File I	Edit View	Instrument Options Window	Help	
] 🖻	80	💁 B 🖪 🗙 🕮	•	
	Filing	Develop La	bels Analysis	
-V	Vorksheet	Methods		
			ent Matrix	
		<u>A</u> dd Method y	Review	
	iA	East Sequential Wizard	Up	
	<u> </u>			
	A	SRM Wizard	Down	
			Delete	
	(Ch	Edit Methods		
	<u> </u>		Copy to Library	
		Edit		
		<u>S</u> equence Parameters.		
	Help			
	Untitled1			
	By:A.S	orkheh@yahoo.com		151
-	start	🔶 Spectraa	Document1 - Microsof EN	ب.ط 02:35 🚺 📢

For the air-acetylene flame, the acetylene flow is about 2 liters/minute,

For the nitrous oxide-acetylene flame, the acetylene flow is about 14 liters per minute or 30 cubic feet per hour.

🗢 🗛 280FS - Untitled1	_ 7 🗙
File Edit View Instrument Options Window Help	
🛛 😂 🛛 🖬 🧯 Methods - Method 1 of 1	
Filing Type/Mode Measurement Optical SIPS Standards Calibration Sampler Notes Colimation Workshee PROMT Integration Optical Calibration Mode Image: Single Concentration Integration Optical Scale Expansion Peak Height Peak Area Optical Bracketing Standards Internal Standard	
Minimum Reaging 0.0000 Smoothing 7 point Image: Standard 3 2 Sample 3 2 Sample 3 2 Image: Standard 3 2 Sample 3 2 Standard 3 2 Sample 1.0 2 Read Delay 10 2 Sample 1.0 2	
Image: Sector]
🛃 start 🔷 Spectraa 🔯 Document1 - Microsof EN 🤇	ب.ط 02:37 🕕

For routine analyses, integration times of 1 to 3 seconds are generally used. Precision can be improved by using longer integration times, up to a maximum of roughly 10 seconds. Integration times longer than 10 seconds provide no further improvement and are generally not recommended.

🔶 AA 280FS	- Untitled1				_ ð 🗙
File Edit View	Instrument Options Window H	elp			
🖙 🖬 🖬	Methods - Method 1 of 1				
Filing	Type/Mode Measurement	Optical SIPS Standa	ards Calibration Sampler	Notes Co	
- Workshee	HC Lamp UltrAA Lamp Lamp Position Lamp Current (mA)	1 4.0			
	Monochromator Wavelength (nm) Slit Width (nm) Background Correction	328.1 0.5 BC Off			
Help	< Back Next >				
			Ok Car	ncel Help	
🛃 start	🔶 Spectraa	🔄 Document1 - Microsof		EN 🔇	ب،ظ 02:37

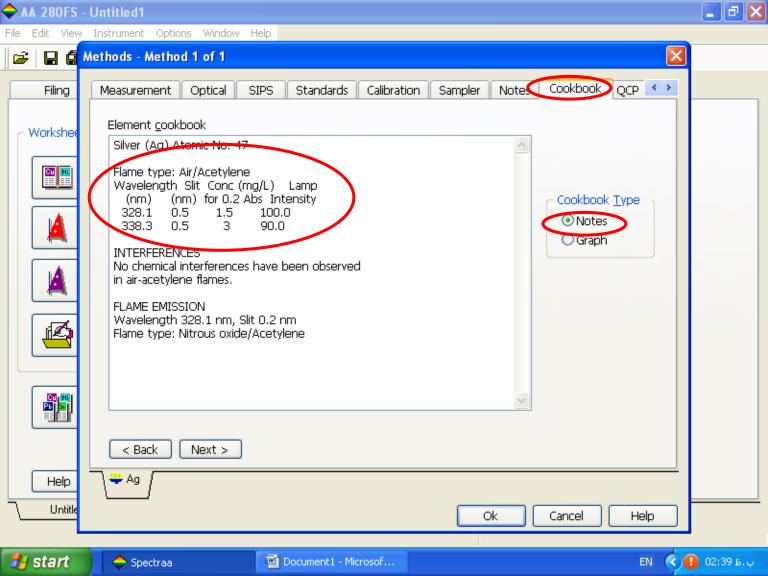
Several possible wavelengths are listed for each element. The most commonly used primary wavelength is always listed first. Select the best wavelength for your analysis based on the concentration range of the samples. If the samples are at a very low concentration, the most sensitive wavelength should be selected; if the samples are very concentrated, a less sensitive wavelength should be used.

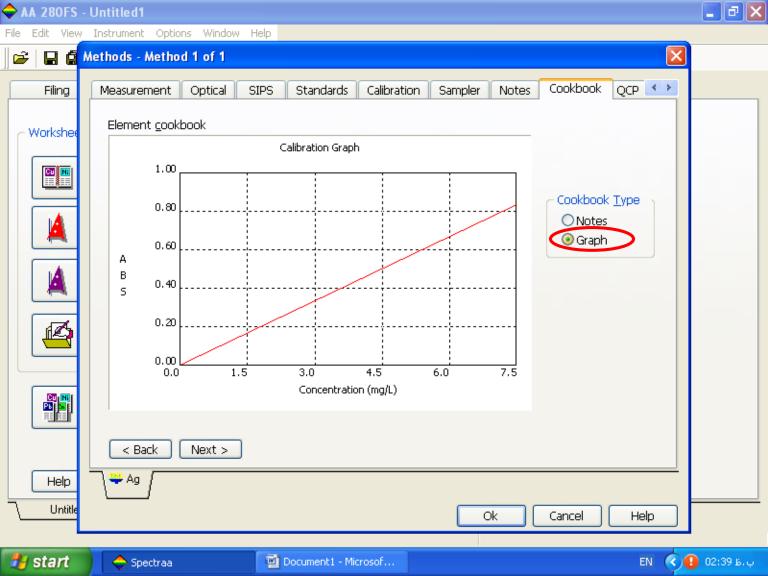
Slit Width

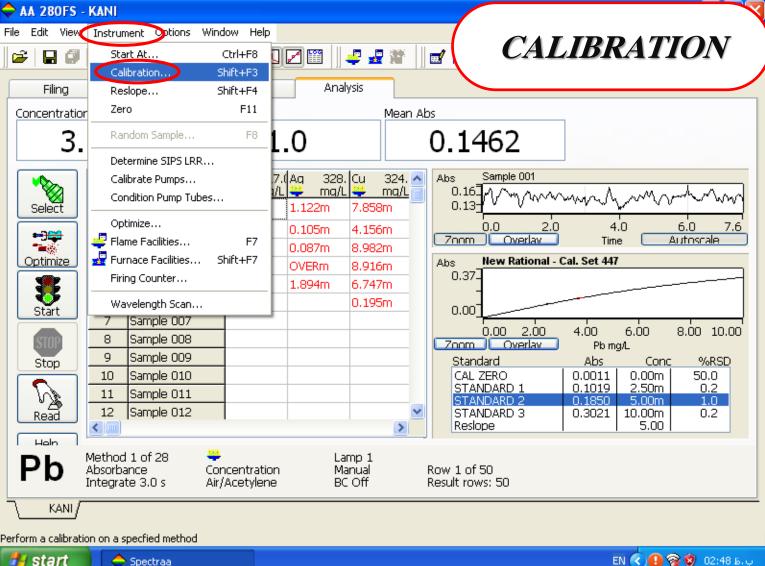
The slit width listed for each element is the one found to be optimum

for that element at the particular wavelength. Other slits can be used,

but the signal to noise ratio and characteristic concentration will vary.

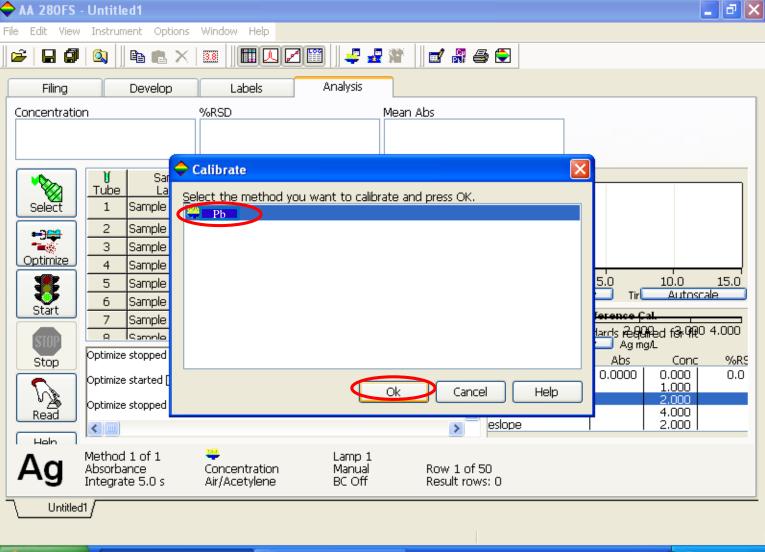

For wavelengths in the UV range, a single recommended slit setting (0.2 nm, 0.7 nm, or 2.0 nm) is listed. Two recommended slit positions (e.g., 0.2/0.4 nm) are listed for wavelengths in the visible region. The 0.2 nm, 0.7 nm, and 2.0 nm positions are for those spectrometer models


utilizing a single grating, while the 0.4 nm and 1.4 nm positions are for


spectrometer models that have dual gratings.

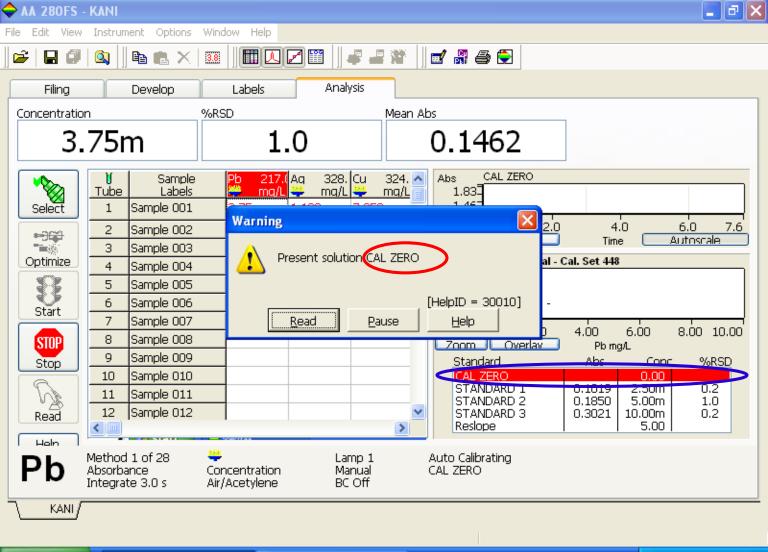
🗢 🗛 280FS - Untitled1	💶 🗗 🗙
File Edit View Instrument Options Window Help	
🛛 😅 🛛 🖬 🧃 Methods - Method 1 of 1	×
Filing Type/Mode Measurement Optical SIPS Standards Calibration Sampler Notes Co	•
Worksher Image: Standards Standards <th></th>	
SIPS Bulk Std Conc Standard Count < Back Next >	
Help Ag Untitle Ok Cancel Help	
🛃 Start 🔰 🔶 Spectraa 🔤 Document 1 - Microsof EN	ې،ط 02:38 🕒 🕥

🔶 🗛 280FS -	- Untitled1						_ P 🗙
File Edit View	Instrument Options Window	Help					
🛩 🖬 🧃	Methods - Method 1 of 1						
Filing	Type/Mode Measurement	: Optical SIPS	Standards	Calibration	Sampler Note:	5 Col	
- Workshee		inear 💌 Iew Rational	R <u>e</u> calibr	ation Rate Rate	100 🜲		
	Cal <u>Z</u> ero Rate C	inear Inear Origin Quadratic Quadratic Origin Lubic Lubic Origin		Std N <u>o</u> . on Factor	2		
		Slope Tests L alibration 20.0	ower & Uppe	r Limit i0.0 📚 %			
		eslope 75.0	≈ % 12∞ % 0.	5.0 📚 %			
		ead Reagent Blank wit	h Calibration /	Reslope			
	< Back Next >						
	Ag 🖉			Ok	Cancel	Help	
背 start	🔶 Spectraa	Document1 - Micro	osof			EN 🔇	ب.ط 02:39



👄 Spectraa

ب.ط EN 🔇 🚹 🛜 😨 02:48 ب.

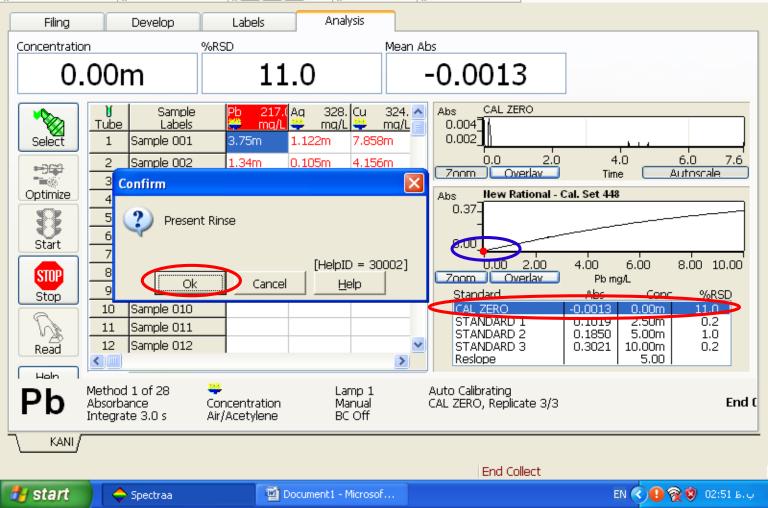

🔷 🗛 280FS - Untitled 1

_ - ×

File Edit View Instrument Options Window Help

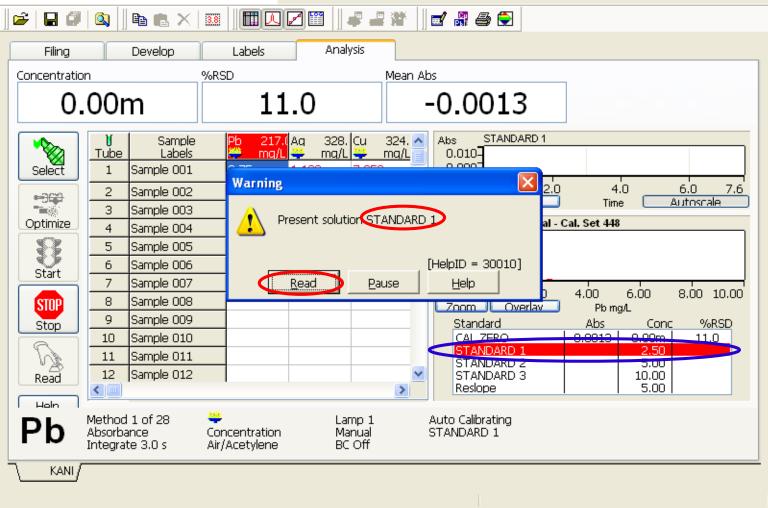
|| 🖆 | 🖬 | 🕼 | 🛯 📭 🚬 | 🎫 | 📗 🛄 💭 🖉 📰 | || 🚅 🚔 🐩 | || 🕣 🔐 🖨 😌

Filing	Develo	p Labels	Analysis		
Concentration	n	%RSD	M	lean Abs	
	MI Sa			Abs Sampl	e.001
Select Optimize Start		Analysis Checklist Ag Item Che HC Lamps Insert	eck t Ag lamp in positic SpectrAA IGNITE	n 1 (active)	0 10.0 15.0 Tir <u>Autoscale</u> ds Regimed f@r@f@0 4.000 Ag mg/L
Stop	Replicates Stan Flame settings: Flame Type: Airya Burner Height: 13	ACELVIENE, AIL NOW, 13.30 E 3.5 mm	Millin, Acecylene How		Abs Conc %RS .0000 0.000 1.000 2.000 4.000 2.000
Ag	Method 1 of 1 Absorbance Integrate 5.0 s	Concentration Air/Acetylene	Lamp 1 Manual BC Off	Row 1 of 50 Result rows: 0	Meth
	<u>'</u>				


👄 Spectraa

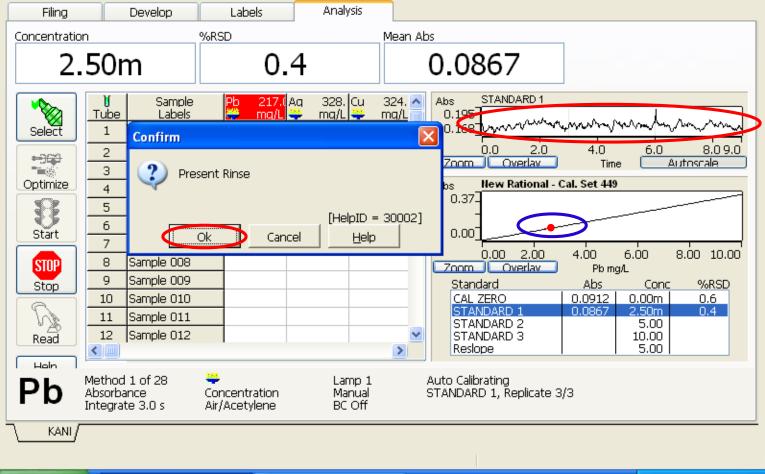
_ **-** ×

File Edit View Instrument Options Window Help


🛩 | 🖬 🥥 | | 🖻 💼 🗙 | 💷 🔲 🛄 📿 🖾 🗐 | | 🚅 🚢 💥 | | 🗹 🔐 👙 🚍

File

Edit View Instrument Options Window Help

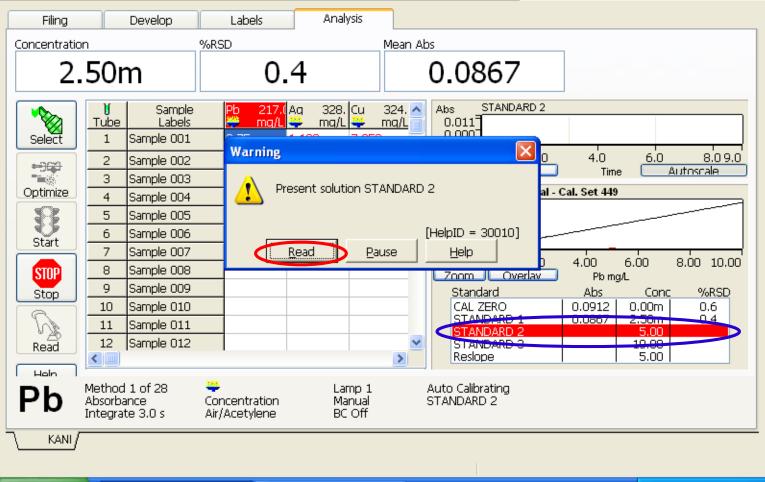


File

Edit View Instrument Options Window Help

_ 7 🗙

🛩 | 🖬 🥥 | || 🛍 💼 🗙 | 💷 | || 🎟 🔍 🖉 📰 | || 🚅 🚢 💥 | || 🜌 🖷 👙 🚍

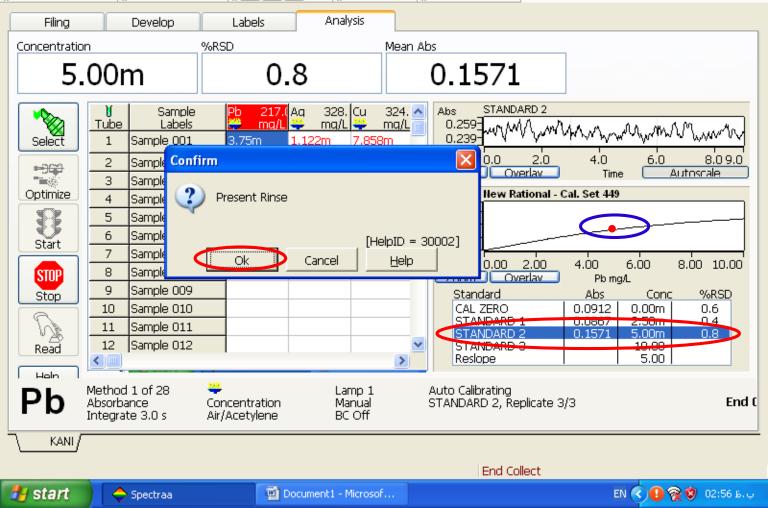


File

_ 7 🗙

Edit View Instrument Options Window Help

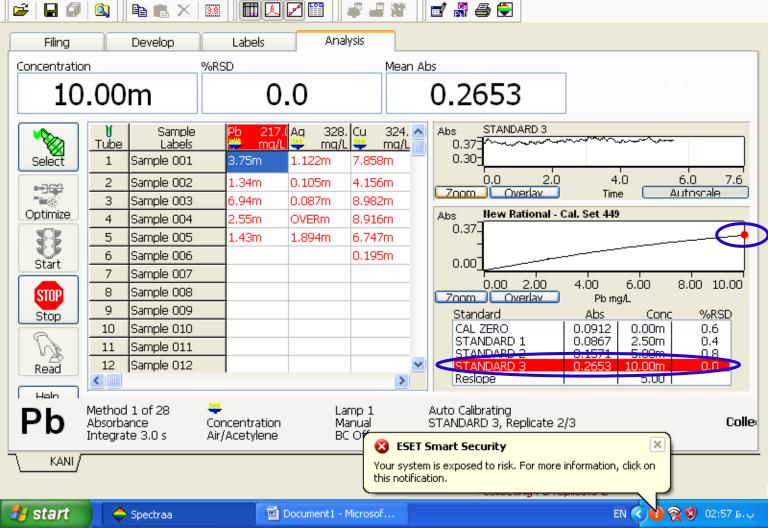
🛩 🖬 🖉 🔕 🛛 🖻 💼 🗙 💷 📗 🗔 🖉 🕮 🗍 🚅 🚆 🔛 🚮 🗁 💭



_ - X

File Edit View Instrument Options Window Help

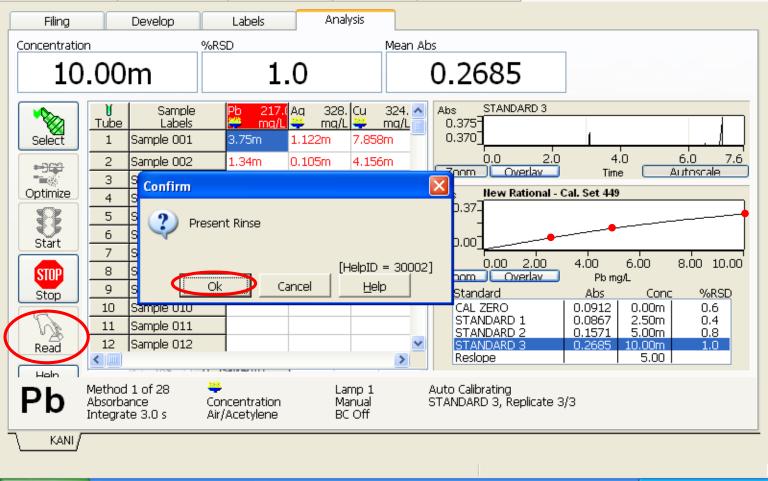
🛩 | 🖬 🖉 | 🔕 || 🖻 💼 🗙 | 💷 || 🛅 🖸 🖉 🖽 🗐 🖉 🖼 🖉 💭



<u> </u>					
~		- 20	ALC	17.1	
-	AA		OFS	 ŇΑ	
~			~ ~		

- 7 🗙

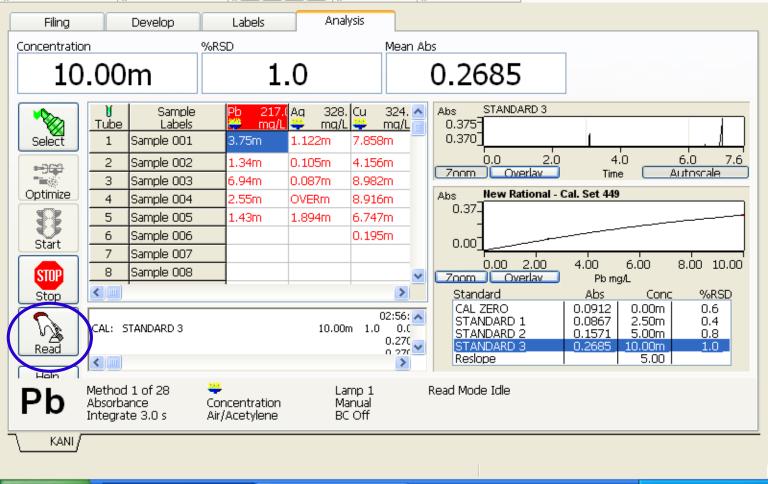
Options Window Help File Edit View Instrument


B ø ٩ 3.8

_ **d** X

File Edit View Instrument Options Window Help

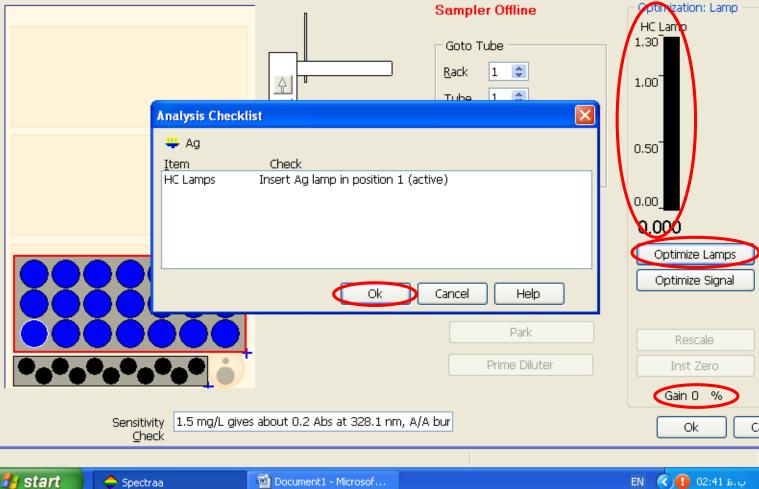
😂 | 🖬 🥥 | | 🖻 💼 🗙 | 💷 📗 🖸 🖓 🖽 💭 🖉 🔛 | | 🚅 💥 | | 🗹 🔐 👙 💭



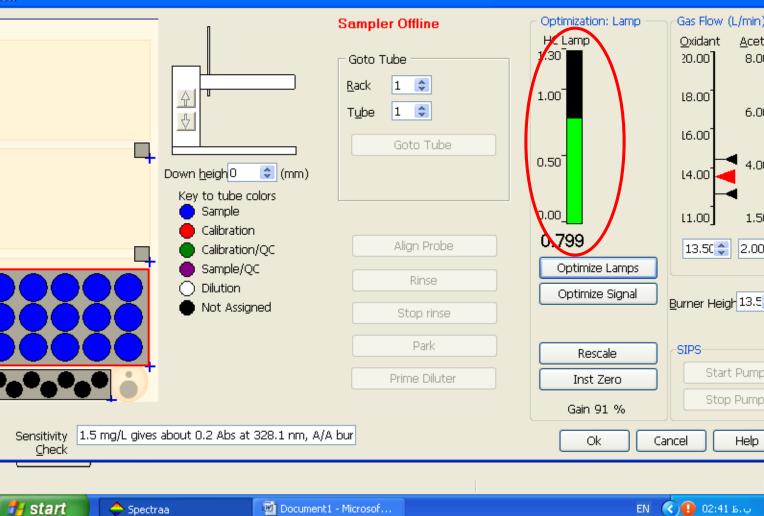
_ 7 🗙

File Edit View Instrument Options Window Help

🛩 🖬 🖉 🔕 🛛 🖻 💼 🗙 💷 📗 🗖 🖉 🕮 🗍 🜌 🖀 😂

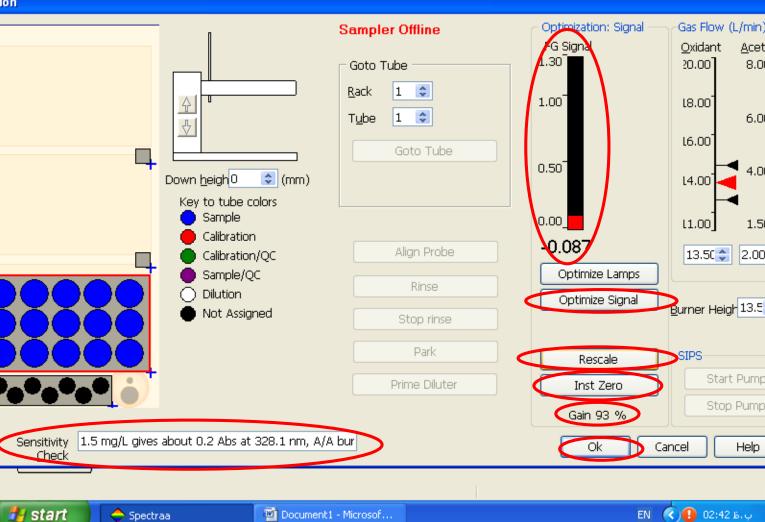


Ә 🗛 280FS - Untitled1		
	Options Window Help	
🛩 日 🕼 🖄 📗 🛍 🕯	L X 💷 🎟 🛛 🖉 🞬 🚅 📲 🖇	
Filing Devel	lop Labels Analysis	
Concentration	%RSD Me	ean Abs
	Sample Ag 328.	Abs Sample 001
Select 1 Samp	La ⁱ 🔷 Optimize	
2 Samp 3 Samp 3 Samp 4 Samp 4 Samp 5 Samp 6 Samp 6 Samp 7 Samp 9 Start 7 Samp 9 Start 7 Samp 9 Sa	ile ile ile ile ile ile ile ile	5.0 10.0 15.0 Tir Autoscale
Ag Method 1 of 1 Absorbance Integrate 5.0	Concentration Manual	Row 1 of 50 Result rows: 0
Untitled1		
🛃 start 🔰 🔶 Spectr	raa 🔤 Document 1 - Microsof	EN 🔇 🕕 02:40 Б. џ


AA 280FS - Untitled1 File Edit View Instrument Options Window Help Flame Optimization Sampler Offline

_ 7 🗙

🔷 🗛 280FS - Untitled1


ion

_ - X

🗢 🗛 280FS - Untitled1

ion

_ - X

🔷 🗛 280FS - Untitled1

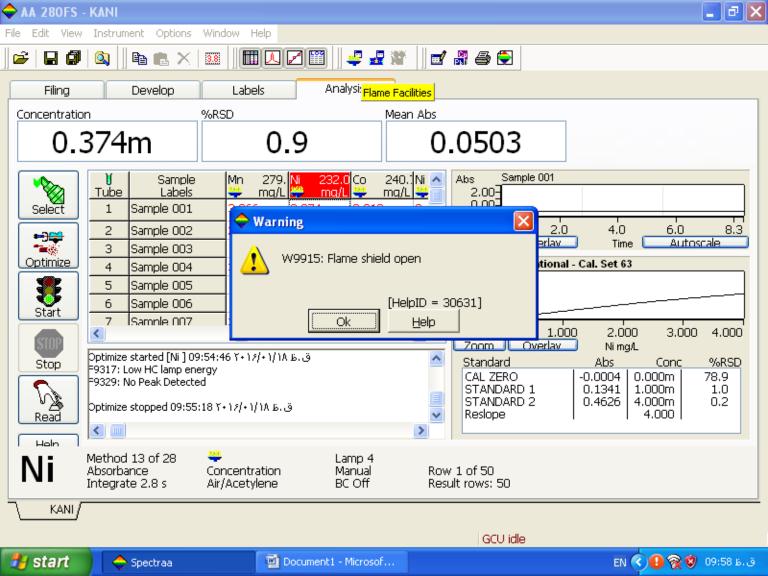
_ - X

File Edit View Instrument Options Window Help

|| 🖆 | 🖬 | 🕼 💼 × | 🎫 || 🎹 🔍 🖓 🎬 || 🤪 📲 💥 || 🕣 🕷 👙 😒 |

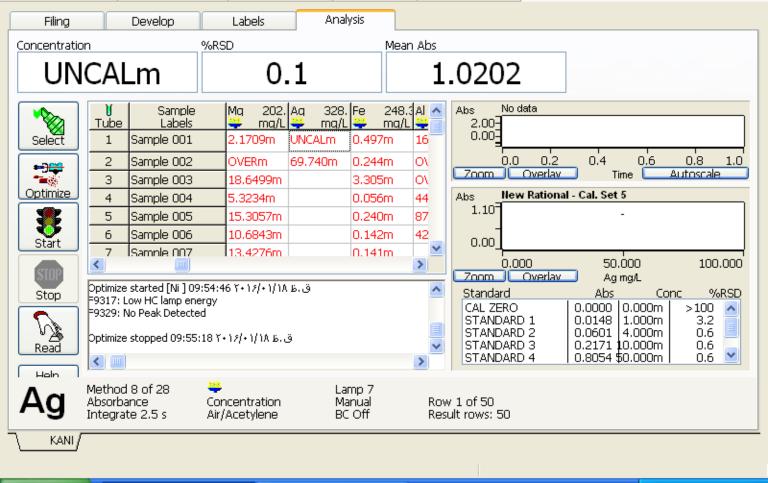
Filing	Develop	Labels	Analysis					
Concentration	1	%RSD		Mean Abs				
Stop	1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample	ple Ag 328. Optimize Select the method yo Ag 2:42:54 Y+17/+1/+V B.Q DING PLES	u want to optim	Abs ize and press OK. Ok Cancel TANDA TANDA Solution Row 1 of 50 Result rows: 0	RD 2	5.0 Tir etence (al. larris regularis Ag mg/L Abs 0.0000	10.0 Autoscal ed f& % % % 0 Conc 0.000 1.000 2.000 4.000 2.000	

Flame Facilities

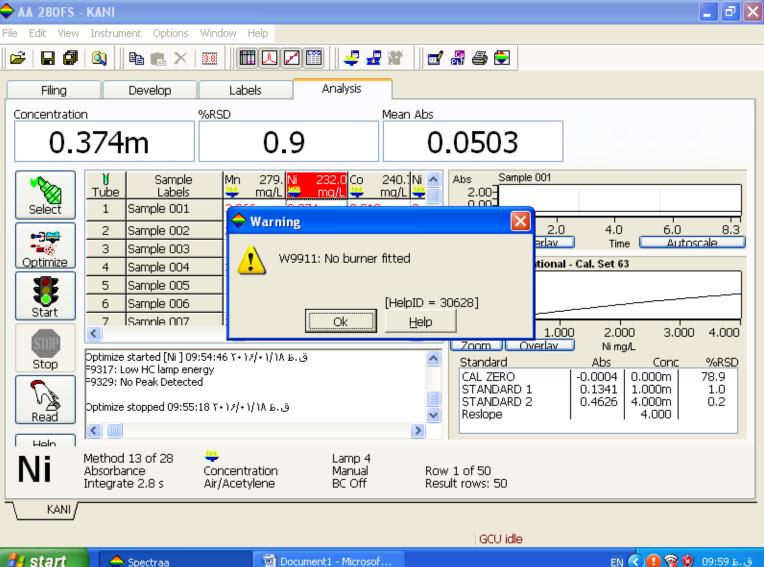

	Sampler Offline	SIPS Pump
TURNING HCL OFF	Goto Tube <u>R</u> ack 1 📚 Tube 1 📚 Goto Tube	Uptake Rate 5. Load Unic Purge L <u>H</u> Pump Purge RH Pump Stop Pumps
Key to tube colors Sample Calibration Calibration/QC Sample/QC Dilution	Align Probe	Turn <u>O</u> n Lamps ETC-60 ON
Not Assigned	Stop rinse Park Prime Diluter	Close H
KANI/		

🔷 🗛 280FS - KANI						💶 🗗 🗙
Filing	ument Options W			NDING		
Concentration	1m	0.9		0.0503		
Stop =9329 =9329 =9329 = 9329 Optimiz Nu: Metho	E La Ontin Sample Sampl	nize al Error F9317: Low HC lam (np energy [Sp	STANDARD I STANDARD 2 Reslope	X 4.0 Iment 1] Set 63 2.00 Nimg Help Vos 004 0.1341	
		ncentration 'Acetylene	Manual BC Off	Row 1 of 50 Result rows: 50		

眷 start

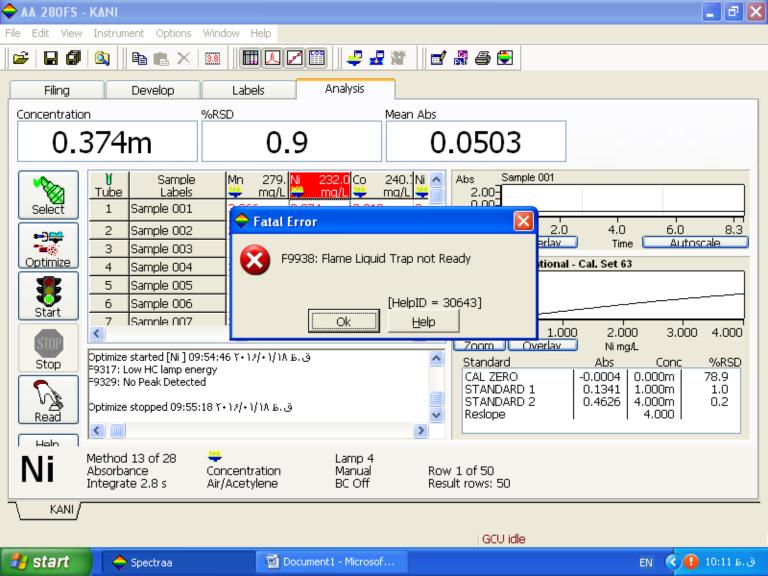


<u> </u>				
~		2001	e	V A NU
-	AA	2001	- 6	KANI
~				

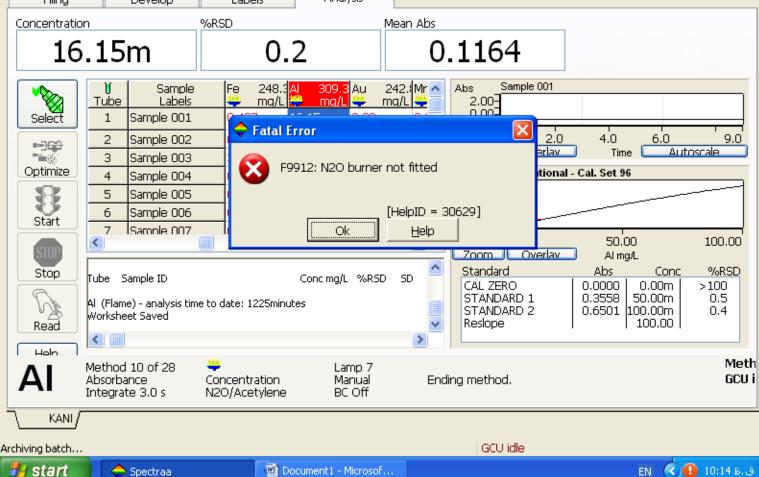

- 7 🗙

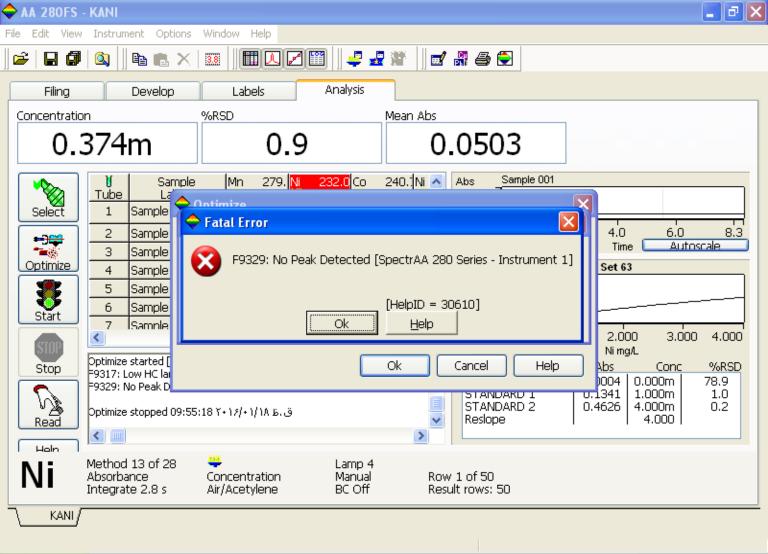
File Edit View Instrument Options Window Help

🛩 | 🖬 🧔 | | 🛍 💼 × | 💷 | | 🏛 🛛 🖉 🔛 | | 🚅 📲 | | 🗹 🔐 👄 😂



Document1 - Microsof...





Instrument Options Window Help Edit View

- 0 X

File 🎹 🔼 🗷 🎬 🛯 🦨 🚢 💥 🗍 🗹 🔐 🖨 😜 **2** Ø ٩ È 💼 3.8 Analysis Filing Develop Labels

🔷 AA 280FS - KANI File

_ ð 🗙

9.0

100.00

%RSD

>100

0.5

0.4

Meth

GCU i

Autoscale

Instrument Options Window Help Edit View 🎹 📐 🖍 🎬 📲 📲 🎬 📗 🗹 🖁 🎒 🔁 H đ ٩ È 💼 3.8 Analysis Filing Develop Labels Concentration %RSD Mean Abs 16.15m 0.11640.2 Sample 001 M Sample Fe 248.3A 309.3 Au 242. Mr 木 Abs Tube Labels mq/L 🎇 mq/L 🕰 2.00 ma/L Select 1 Sample 001 🔷 Fatal Error X Sample 002 4.0 6.0 2 •••••••• Time - 88 З Sample 003 X F8509: Instrument offline or not connected [- Instrument 1] Optimize Cal. Set 96 Sample 004 4 8 5 Sample 005 [HelpID = 30551] 6 Sample 006 Start 7 Sample 001 Ok Help 50.00 < Overlay Zoom AI mg/L Standard Abs Conc Stop Tube Sample ID Concimg/L %RSD SD CAL ZERO 0.0000 0.00m STANDARD 1 0.3558 50.00m Al (Flame) - analysis time to date: 1225minutes STANDARD 2 0.6501100.00m Worksheet Saved Reslope 100.00 Read < >

Holn Method 10 of 28 Lamp 7 Absorbance Concentration Manual Endina method. Integrate 3.0 s N2O/Acetylene BC Off KANI /

Archiving batch...

2

